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Abstract13

Understanding how opinions evolve is crucial for addressing issues such as polar-14

ization, radicalization, and consensus in social systems. While much research has15

focused on identifying factors influencing opinion change, the role of language16

and argumentative fallacies remains underexplored. This paper aims to fill this17

gap by investigating how language – along with social dynamics – influences opin-18

ion evolution through LODAS, a Language-Driven Opinion Dynamics Model for19

Agent-Based Simulations. The model exploits LLM agents to simulate debates20

around the “Ship of Theseus” paradox, in which agents with discrete opinions21

interact with each other and evolve their opinions by accepting, rejecting, or22

ignoring the arguments presented. Populations of LLM-based agents consistently23

converge toward a single opinion, mainly agreement, with the presented state-24

ment, regardless of model or framing. Convergence arises from an asymmetric25

bias: accept (reject) probability is positively (negatively) correlated with the26

signed distance between opinions. Moreover, such AI agents are often produc-27

ers of fallacious arguments in the attempt to persuade their peers and – due to28

their complacency – they are also highly influenced by arguments built on logical29
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fallacies. These results highlight the potential of this framework not only for sim-30

ulating social dynamics but also for exploring, from another perspective, biases31

and shortcomings of LLMs, which may impact their interactions with humans.32

Keywords: Large Language Model, Opinion Dynamics, Logical Fallacies, Social33

Simulations, Agent Based Model34

1 Introduction35

For the logical question of things that grow; one side holding that the ship remained the36

same, and the other contending that it was not the same.37

Plutarch, Life of Theseus 23.138

In its original formulation, the “Ship of Theseus” paradox concerns a debate over39

whether or not a ship that had all its components replaced one by one would remain40

the same. Consider engaging in a discourse regarding this paradox within the context41

of a philosophy class, an online Reddit community, or during a dinner gathering with42

friends. Everyone will reason on the paradox and try to convince others of their stance.43

Convincing arguments can be proposed both in favor of and against this statement.44

Ultimately, everyone will leave the debate with their own opinion or no opinion at all.45

Regardless of the context in which the debate takes place, one thing does not change:46

the means through which we will try to convince our peers, or they will convince us,47

is language. When a speaker intentionally uses language to convey a specific purpose,48

they exert an illocutionary force that can influence the listener’s perspective, leading49

to a common understanding or increased division. Therefore, we must consider how50

language shapes the development of opinions.51

The development of individual and public opinions has long been a focus of psy-52

chologists and sociologists, and more recently, it has been extensively explored in53

computational social science [1, 2] and sociophysics [3, 4]. This research acknowledges54

the complexity of Opinion Dynamics, (henceforth, OD), where multiple interacting55
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factors lead to emergent behaviours such as consensus [5], polarization [6], and radical-56

ization [7], often difficult to predict. Understanding the drivers of opinion change and57

going beyond mere observation of opinion patterns remains a complex issue. One com-58

mon approach to tackle this issue is through models of OD, which aim to explain how59

opinions evolve via social interactions [8]. These models simplify real-world phenom-60

ena, enabling the exploration of various what-if scenarios. They generally simulate a61

population of individuals and their interactions, with processes often governed by sim-62

ple rules that reflect empirically observed behaviours, such as the repeated averaging63

of opinions with neighbours [9, 10]. Recent models also incorporate the backfire effect64

[11, 12], where individuals become more entrenched in their opinions when confronted65

with contradictory information [13]. Opinion evolution is driven by factors rooted in66

socio-psychological theories, such as cognitive biases [14], as well as external forces like67

peer pressure [15], algorithmic biases [16], and mass media [17]. While these models68

provide simplified representations of societal dynamics and help stakeholders under-69

stand social behaviours, they often overlook important complexities. For example,70

they typically map opinions and messages onto numerical values and rely on rule-71

based agents, which limits their ability to capture the nuances of human behaviour72

and the complex relationships between agents’ characteristics, such as demographics73

and personality traits.74

To overcome such limitations, we propose a novel framework exploiting Large Lan-75

guage Models (LLMs) capabilities to create an Agent Based Model (ABM) that76

allows for the study of the interplay between language and opinion change in the long77

term. The relationship between language and opinion change has been underexplored.78

Monti et al. [18] is a prominent exception, highlighting the role of knowledge, simi-79

larity, and trust in a social media case study. Their findings challenge simplistic OD80

models, emphasizing the need for more complex analysis. LLMs have revolutionized81

language-related studies, enabling more realistic social simulations. Park et al. [19, 20]82
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introduced LLM agents as social simulacra, capable of simulating personalities and83

social behaviours. Claims about LLMs possessing Theory of Mind (ToM) [21] remain84

debated: while Kosinski [22] and others [23, 24] suggest they exhibit emergent ToM85

abilities, critics [25–27] highlight their inconsistencies in ToM tasks and lack of gen-86

uine social intelligence. Nevertheless, even a simulated ToM may enhance OD models87

by enabling agents to consider interlocutors’ mental states. LLM-driven populations88

display spontaneous emergent behaviours akin to human societies, such as scale-free89

networks [28], information diffusion [29], and social conventions through interactions90

[30]. In opinion evolution, LLM agents replicate echo chambers [31], polarization [32],91

and confirmation bias effects [33]. While LLMs can generate persuasive arguments92

[34] aligned with psycho-linguistic theories [18], they are less convincing than humans93

[35] and exhibit biases toward scientific accuracy [33], politeness [36], and platform-94

specific discourse styles [37]. Despite these biases, LLM-based agents have successfully95

reproduced experimental results in psychology and linguistics [38], making them valu-96

able tools for in silico social experiments. A summary of representative works and97

their main characteristics is provided in Table 1.98

Fig. 1: Graphical schema of LODAS. The LLM agents population is initialized
as a network; each agent is an LLM instance with an initial opinion in the range [0,
6] (a). At each iteration, two agents are randomly chosen and prompted to act as
Opponent and Discussant (b). The Discussant is prompted to listen to the opinion of
the Opponent around the discussion statement and may then accept, reject, or ignore
such opinion (c) and update their current one accordingly by ±1 (d).
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This study aims to advance opinion dynamics and social simulations by leveraging99

LLMs. For this purpose, we propose a novel framework for OD with LLM agents,100

supported by a case study that addresses three research questions (RQs).101

Traditional models rely on mechanistic assumptions rarely validated in real-world102

settings, limiting their applicability. Instead, we explore whether LLM agents, oper-103

ating without predefined update rules and guided by the Theory of Mind hypothesis,104

can exhibit realistic individual behaviour and emergent collective dynamics (RQ1).105

Since LLM agents engage in natural language interactions, unlike traditional mech-106

anistic models, this opens up for the investigation of the interplay between language107

and opinion change. Specifically, we examine how these agents employ and propa-108

gate logical fallacies and assess their role in persuasion (RQ2). While existing work109

has focused on detecting logical fallacies using LLMs, it often overlooks the possibil-110

ity that the LLMs’ reasoning processes may be flawed and susceptible to fallacious111

argumentation.112

A notable exception is Breum et al. (2023) [34], who analyzed LLM-driven per-113

suasion, showing that trust, status, and knowledge influence stance shifts. However,114

their study focused on one-shot interactions, while we examine how LLMs adapt argu-115

ments and leverage fallacies over time. Payandeh et al. (2023) [39] provide the first116

systematic analysis of LLMs’ susceptibility to fallacious reasoning in debates. They117

find that GPT-4 agrees with flawed arguments 67% of the time, significantly more118

than logically sound ones. Building on this, we investigate how LLMs not only process119

but also generate fallacies in multi-agent interactions, shedding light on their role in120

long-term opinion evolution (RQ2).121

LLMs seem to be susceptible to input prompts, often tending towards sycophantic122

behaviours, as recently observed [40, 41]. In this work, we aim to evaluate how the123

initial conditions, particularly the distribution of initial opinions and the framing of124

arguments, influence the resulting opinion dynamics and linguistic behaviour (RQ3).125

5



We hypothesize that the way statements are framed —whether positively or nega-126

tively— can directly affect the persuasiveness of agents, leading to different patterns127

in opinion evolution.128

To investigate all these questions, we introduce LODAS, a Language-Driven Opin-129

ion Dynamics Model for Agent-Based Simulations framework. The framework allows130

the definition of a custom population of LLM agents and their interaction on a topic,131

where they express their opinion on the topic with illocutionary acts (RQ1).132

A schematic representation of LODAS is provided in Figure 1. As shown in133

Figure 1(a), LLM agents (instances either of Mistral or Llama models) hold one of134

seven possible opinions, evolving through social interactions via ±1 updates. The use135

of a 7-point scale Likert-scale [42] follows established methodologies in psychological136

research for measuring subjective constructs. We simulate three distinct scenarios:137

(i) a Baseline scenario with a uniform opinion distribution; (ii) a Polarized sce-138

nario, where opinions are bimodally distributed between positive and negative stances139

with no neutral positions; and (iii) an Unbalanced scenario, where most agents ini-140

tially hold an extremely negative stance. Throughout the simulations, two agents are141

selected at random (see Figure 1(b)) to engage in discussion (see Figure 1(c)), where142

the Opponent agent (Opponent, from now on) attempts to persuade the Discussant143

agent (Discussant, from now on), who may then update their opinion on the Ship of144

Theseus paradox. This topic was chosen to minimize controversy and prevent conver-145

gence toward a predefined ground truth, a phenomenon documented in prior studies146

[33, 34, 43]. To assess the impact of linguistic framing, we start the discussion with one147

of two formulations: (i) a positive direction (“The ship remains the same”) and (ii) a148

negative direction (“The ship becomes different”). This choice follows prior research149

[33] demonstrating how initial statement framing (“Global warming is/is not a hoax”)150

may influence opinion evolution.151
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Table 1: Overview of works in the literature introducing LLM agents.

Paper Population LLMs Opinion
dynamics

Content
analysis

Chuang et al., 2023 [43] 10 gpt-3.5-turbo-16k " %

Payandeh et al., 2023 [39] 18 GPT-3.5, GPT-4 " "

Breum et al., 2024 [34] 2 Llama-2-70B-chat " "

Ju et al, 2024 [44] 5000 Llama-2-70B " %

Park et al., 2024 [20] 1000 GPT-4o % %

Törnberg et al., 2024 [37] 500 GPT-3.5 % "

Wang et al., 2025 [32] 50 GPT-4o mini " %

The remainder of this paper is organized as follows. In Section 2, we examine the out-152

comes of our simulations across different initial conditions and scenarios, analyzing,153

on the one hand, opinion trends, acceptance rates, and, on the other, the linguis-154

tic patterns in agent interactions, assessing the role of logical fallacies in shaping155

opinion change. Section 3 details the simulation framework and experimental design.156

In Section 4, we discuss our findings, and highlight three different behaviour: con-157

vergence around a single position, tendency towards agreement and an asymmetric158

acceptance-rejection bias, whereas higher opinions are more often accepted and rarely159

rejected, while lower opinions are more often rejected and rarely accepted, producing160

an asymmetric pattern in opinion updating.161

We also highlight the presence of fallacies in LLM-generated discourse and their162

impact on persuasion. Additionally, in Section 5, we outline key takeaways, study163

limitations, and directions for future research. Additional figures and analyses are164

provided in the Supplementary Materials.165

2 Results166

This work extends the modelling of OD using LLM agents to explore whether and167

which emergent behaviours arise without explicit opinion modification rules. Addi-168

tionally, it examines the linguistic features of the debates, linking them to specific169

agent roles and behaviours. To this end, we defined a framework in which a networked170
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population of LLM agents discusses a given topic, updating their opinions according171

to tunable behavioural rules. Our simulations considered a population of 140 LLM172

agents. We assumed a mean-field context (i.e., all agents can interact with all other173

agents without any social restrictions), a commonly used starting point to identify174

potential emerging behaviours from the opinion evolution process. Each agent is an175

LLM instance, holding a discrete opinion in the interval [0, 6], where 0 means strongly176

disagree and 6 strongly agree with a given statement. Agents – as in many classical177

OD models – interact with each other at discrete time intervals in a pairwise fash-178

ion: at each time step, an interacting pair is chosen at random among the connected179

agents; in this way, in each interaction, we can assign each agent one of two roles,180

respectively Opponent and Discussant.181

In the present work, we assigned as a discussion topic the paradox of the Ship of182

Theseus, a thought experiment on the concept of identity first recorded in Plutarch’s183

works. The rationale behind the paradox is the following: if all the parts of the ship184

are replaced over a long period, is the resulting ship the same ship it was at the185

beginning? This dilemma was chosen because there is no scientific truth. In this way,186

we avoid LLMs converging toward what they know to be scientifically valid and limit187

their bias toward immediate adherence to positive opinions. We designed our model188

to pose this “dilemma” in two different ways: (i) “the boat is the same”, and (ii) “the189

boat is not the same”. We leveraged Mistral-7B Instruct [45] (Mistral from now on)190

and Llama-3-8B [46] (Llama from now on) to compare different open state-of-the-art191

LLMs. By varying the direction of the dilemma, the LLM, and the initial distribution192

of opinions, we created 12 distinct settings. From our simulations, we obtained opinion193

evolution data and related textual data, allowing us to relate language and opinion194

change.195
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Fig. 2: Balanced scenario – Mistral and Llama agents opinion trends. Mistral
(a)-(b) and Llama (c)-(d) opinion trends for the positive (a)-(c) and negative (b)-(d)
statements. Trends are represented for Strongly Disagree (dark red), Disagree (red),
Mildly Disagree (orange), Neutral (yellow), Mildly Agree (light blue), Agree (blue),
and Strongly Agree (dark blue) opinions. Lines indicate the average prevalence of
opinions at each time step, while the shade indicates the 95% confidence interval.
Averages are computed over 10 runs.

Emergent Behaviours in LODAS196

To investigate whether populations of LLM agents exhibit emergent social behaviours197

(RQ1) – such as convergence, consensus, or polarization – we begin by analyzing the198

opinion evolution in the Balanced scenario. Here, agents’ initial opinions are uniformly199

distributed across the opinion spectrum. This setup serves as a neutral baseline to200

avoid initial biases and allows comparison with bimodal or skewed initial distributions.201

Figure 2 illustrates the evolution of opinion distributions over 30 iterations, across202

10 independent simulation runs. The shaded areas represent the 95% confidence203

interval. Across all four panels, we observe consistent patterns.204

First, we note a consistent pattern of convergence: agent populations do not205

remain evenly distributed or fluctuate randomly, but rather gravitate toward one or206
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two dominant opinions. This concentration is stable across runs, with the majority of207

agents consistently clustering around the same opinion categories.208

Second, this convergence is predominantly oriented toward agreement with the209

presented statement, whether it is in the positive or negative direction. In both Mis-210

tral conditions (Figures 2(a)-(b)), we see a progression from mild agreement to full211

agreement, resulting in a dominant majority of agents aligning with the statement.212

Similarly, in Llama—Same setting (Figure 2(c)), agents increasingly converge around213

Mildly Agree and Agree, while Neutral initially rises and then declines. An excep-214

tion to this tendency towards agreement is found in the Llama—Different setting215

(Figure 2(d)), where the dominant final opinion is Mildly Disagree. Here, although216

Neutral and Mildly Agree increase early on, they subsequently decline, reversing the217

opinion trend compared to other conditions. This distinct behaviour underscores that218

while convergence is a general feature, its orientation (agreement or disagreement)219

may depend on model-specific dynamics and prompt framing.220

Comparison with Random Baseline.221
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Fig. 3: Balanced scenario – Mistral and Llama-agents transition matrices.
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state j for the positive (a)-(d) and negative (b)-(e) statements. Annotated cells are
significant with respect to the Random Null Model (p < 0.05) according to the t-test.
Results are averaged over 10 runs.

To determine whether the observed convergence and agreement patterns arise from222

chance or represent systematic behaviours, we compare them with a Random null223

model that mirrors the structural features of the simulations (population size, number224

of iterations, frequency of interactions, and initial distribution) but replaces agents’225

decision-making with stochastic transitions. In this model, agents randomly shift their226

opinion by -1, 0, or +1 upon interaction, with probabilities uniformly distributed227

across permitted transitions (see Section 3 and Supplementary Materials Section S1228

for further details).229

The Random null model fails to reproduce the emergent patterns observed in230

LODAS simulations. The opinion distribution remains uniform over time (this also231

holds with different initial conditions, see Supplementary Figures S1- S3).232

To statistically validate the difference, we compare the transition matrices of the233

LODAS simulations and the Random baseline. Figure 3 presents the average transition234
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Fig. 4: Balanced scenario – Mistral and Llama-agents average acceptance
probabilities P(A|oD, oO). Mistral (orange line and matrices (a)-(b)) and Llama
(blue lines and matrices (c)-(d)) average acceptance rates for the positive (solid lines
and (a)-(c) matrices) and negative (dashed lines and (b)-(d) matrices) statements.
Top panel: average probability of the Discussant accepting the Opponent’s opinion
as a function of ∆x = xO − xD. Bottom panel: matrices represent acceptance rates
averaged over 10 runs.

probabilities Tij = P(xD(t + 1) = j | xD(t) = i) across all conditions. Black-bordered235

cells denote statistically significant differences (p < 0.05, obtained with a two-sample236

Welch’s t-test [47] with unequal variances on the distributions obtained from 10 inde-237

pendent executions of each model). A substantial majority of opinion transitions in238

LODAS simulations are significantly different from the random baseline, confirming239

that the observed behaviours are not attributable to randomness.240

Mechanisms Behind Convergence – Testing the Sycophancy Hypothesis.241

This first analysis of opinion evolution trends, however, does not explain how these242

dynamics emerge. A first hypothesis is that convergence results from sycophantic243
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behaviour, i.e., agents consistently adopting their opponent’s opinion, which is an LLM244

characteristics recognized in the literature. To test this, we analyzed the acceptance245

probabilities P (A | xD, xO), i.e., the likelihood that a Discussant’s opinion xD moves246

towards the Opponent’s opinion xO. We computed matrices of P (A | xD, xO) and we247

also computed the average P (A | ∆x) with ∆x = xO − xD.248

Figure 4 shows that acceptance is not indiscriminate. For Mistral agents (orange249

lines and matrices (a) and (b)), acceptance probability increases with ∆x = xO −250

xD: it is above 60% when the Opponent’s opinion is more agreeable (i.e., xO >251

xD), but decreases down to 20% when the opponent has a more disagreeing opinion252

xO < xD. Llama agents exhibit a more symmetric pattern, but still show increased253

acceptance as ∆x increases, revealing a positive correlation between acceptance and254

opinion distance.255

This asymmetry in acceptance contradicts the sycophancy hypothesis. Agents are256

not passively agreeing with every interaction partner; they are selective, favoring257

opinions that are closer or more agreeable with the presented statement than their258

own.259

Moreover, rejection patterns are complementary: Llama agents have a lower P (R |260

xD, xO) than Mistral agents, and overall the probability of rejecting decreases as ∆x261

increases (see Supplementary Materials, Figure S20).262

These patterns indicate that agents do not exhibit sycophantic behaviour nor263

bounded confidence: distant opinions are actively accepted or rejected. Specifically,264

opinions that are more positive and increasingly distant from the discussant’s position265

have a higher (lower) probability to be accepted (rejected), thus skewing the opinion266

distribution towards agreement. Conversely, opinions that are more distant but lower267

than the Discussant’s position show a lower (higher) acceptance (rejection) probability.268

This asymmetry suggests a form of backfire effect, occurring only in one direction269

and proportionally to the opinion distance.270
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Finally, simulations using a toy model in which agents always accept their oppo-271

nent’s opinion produce markedly different dynamics: the majority of the population272

converges on the Strongly Disagree opinion. The complete absence of such a result273

in the LODAS simulations further refutes the sycophancy hypothesis. Conversely,274

toy model simulations where agents always reject their opponent’s opinion generate275

dynamics more similar, albeit more extreme, to those observed, with the majority276

of agents converging on the Strongly Agree opinion (see Supplementary Materials277

Section S1 for further details).278

Together, these findings address our first research question (RQ1), showing that279

LODAS consistently produce emergent behaviours characterized by convergence280

and alignment, typically toward agreement. These trends are statistically sig-281

nificant compared to a random baseline. Moreover, the behaviours do not stem from282

indiscriminate acceptance or sycophancy. Instead, they arise from structured, selec-283

tive interaction patterns shaped by the underlying language models, resulting in an284

asymmetric backfire effect and a bias toward strongly positive opinions, which we can285

call an asymmetric acceptance-rejection bias. The strength of these effects varies286

depending on the choice of LLM.287

Impact of Skewed Initial Opinion Distribution.288
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Fig. 5: Acceptance probability P (A | ∆x) as a function of opinion distance
∆x = xO−xD. Each marker represents the average probability that a Discussant agent
accepts—i.e., moves toward—the Opponent’s opinion, as a function of the opinion
distance ∆x = xO−xD. Lines correspond to different initial opinion distributions: Bal-
anced (blue), Polarized (orange), and Unbalanced (green). Rows distinguish between
the two language models: Mistral (top) and Llama (bottom). Columns refer to the
direction of the statement: Same (left) and Different (right). Results are averaged
over 10 independent runs; shaded areas indicate standard deviations across runs.

To assess the influence of initial conditions (RQ3), we systematically compared289

simulations initialized under three different configurations: Balanced (uniform dis-290

tribution across the opinion spectrum), Polarized (bimodal distribution centered on291

Strongly Disagree and Strongly Agree), and Unbalanced (skewed distribution concen-292

trated around Strongly Disagree). Despite these substantial differences in starting293

configurations, we observe that the qualitative evolution of opinions over time is294

largely preserved across scenarios. In all conditions, opinion trends rapidly shift295

away from initial extremes, with agents progressively converging around moderate or296

positive agreement positions (see Supplementary Materials, Figures S11- S14).297
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Final opinion distributions (see Supplementary Materials, Figures S9- S15) rein-298

force these conclusions, showing that the initial distribution influences only the early299

stages of interaction, with little effect on long-term outcomes. Also, variability met-300

rics (such as entropy, standard deviation, and the effective number of clusters at each301

iteration) further support this conclusion (see Supplementary Materials, Figures S10-302

S16). Across all three initial conditions, we observe a consistent decrease in variability303

over time, indicating convergence toward fewer opinion states. Mistral agents reduce304

variability more quickly, especially in the first 10 iterations, while Llama agents follow305

a slower but steadier trajectory. Notably, the Llama | Same setting in the Unbalanced306

scenario is the only case in which variability increases or remains high throughout,307

reflecting persistent fragmentation.308

Acceptance and rejection behaviours also appear robust to changes in initial309

conditions. The functional forms of P (A | ∆x) (see Figure 5) and P (R | ∆x)310

(see Supplementary Materials, Figure S26) are stable across Balanced, Polarized,311

and Unbalanced scenarios. Similarly, the matrix representations P (A | xD, xO) and312

P (R | xD, xO) reveal consistent interaction patterns.313

Taken together, these results indicate that the initial distribution of opinions has314

a limited and transient influence on the collective dynamics (RQ3). Instead, the key315

determinant of opinion evolution, variability, and interaction behaviour is the LLM316

used to enhance agent decision-making. The differences between Mistral and Llama are317

more pronounced and persistent than those induced by any variation in the starting318

opinion configuration.319

Linguistic Behaviour320

Moving on to RQ2, we analyzed the arguments produced by the agents in both roles –321

Opponents and Discussants – during their conversations on the Theseus’ Ship paradox.322

Specifically, we examined their linguistic behaviour, focusing on the production of323
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persuasive yet fallacious content, and assessed how such fallacious utterances can324

influence the opinion change trend within multi-agent debate.325

Table 2: Percentage of logical fallacies in Opponents’ statements.
Balanced Polarized Unbalanced

Llama Mistral Llama Mistral Llama Mistral
S D S D S D S D S D S D

% Fallacious (O) 20.87 23.39 19.01 19.31 19.88 26.83 16.79 20.22 22.06 20.77 18.39 15.56
Percentage of unique Opponent (O) statements classified as fallacious, across mod-
els (Llama, Mistral), initial opinion distribution (balanced, polarized, unbalanced),
and opinion framing (same, different).

Table 2 shows the average percentage of fallacious statements generated by Oppo-326

nent agents, calculated from aggregated results of 10 discussion runs. In each run,327

Opponents produced a total of 12.600 statements. The percentages represent the ratio328

of fallacious content relative to the total number of statements and are categorized329

by initial opinion distribution – Balanced, Polarized and Unbalanced– by statement,330

and by LLM.331

The proportion of statements containing logical fallacies remained relatively stable332

across all scenarios and discussion framing, at around 20%. Variability was primarily333

attributed to the underlying LLM. Mistral agents produced slightly fewer fallacious334

statements than Llama, especially under unbalanced initial conditions, where only335

15.56% of statements were classified as fallacious. Under balanced conditions, Mistral’s336

fallacy rate remained close to 19%, regardless of the framing of the discussion. In337

contrast, Llama showed an increased sensitivity to negative framing, producing more338

fallacious utterances than Mistral. Nonetheless, the overall fallacy rate remained below339

30% of the total statements.340

Due to the limited variability in fallacy types observed across configurations of341

different LLMs and statement framing, we focus our analysis only on the patterns342
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detected in the Balanced scenario. Additional figures for the Polarized and Unbalanced343

scenarios are provided in the Supplementary Materials (Figures S27 and S28).344

As shown in Figure 6, few types of fallacies emerged, with LLMs often repeating345

similar patterns across different statement framings. The variability of their aggre-346

gated distribution over the 10 runs was minimal, as indicated by the low standard347

deviation value in the error bar. Overall, both Llama and Mistral relied more heav-348

ily on specific types of fallacies, particularly fallacies of relevance, credibility, and349

logic. Furthermore, both models generated arguments in which they reiterated the350

initial premises as conclusions, resulting in the pragmatic defect of circular reasoning;351

this occurred more frequently in the same boat discussion. Additionally, though less352

frequently, they tended to assume a causal relationship without justification (false353

causality).

Table 3: Ratio of Discussants changing opinion for the effect of fallacious
statements.

Balanced Polarized Unbalanced
Llama Mistral Llama Mistral Llama Mistral
S D S D S D S D S D S D

% Opinion change (D) 64.9 71.4 53.79 55.29 78.06 77.16 58.52 60.53 77.84 78.82 60.18 60.72
Percentage of Discussants (D) changing opinion for the effect of fallacious statements
produced by Opponents, across models (Llama, Mistral), initial opinion distribution
(Balanced, Polarized, Unbalanced), and opinion framing (same, different).

354

Having assessed the presence of fallacious utterances in the Opponent agents, we355

moved on to measure the persuasive impact of these fallacies over the Discussant.356

Specifically, we investigated whether the presence of a fallacy in the Opponent state-357

ment caused a shift by ±1 in the opinion held by the Discussant compared to their358

prior stance before the interaction. An overview of this analysis can be found in359

Table 3. Overall, Llama Discussants demonstrated higher vulnerability to logical fal-360

lacies, changing their opinion 78% of the time in the same boat scenario, and 75%361
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Fig. 6: Average logical fallacies proportions for different experiment configurations
across multiple runs. Figures (a)-(b) refer to Llama, while (c)-(d) refer to Mistral.
(a)-(c) refer to Llama (a) and Mistral (c) agents discussing the same boat statement,
(b)-(d) refer to the different boat statement. Error bars represent standard deviation
across 9 runs. The x-axis uses the following abbreviations: R (fallacy of relevance),
L (fallacy of logic), CR (circular reasoning), C (fallacy of credibility), G (faulty
generalization), I (intentional), and FC (false causality).

of the time in the different boat scenario. Conversely, Mistral agents showed greater362

robustness against logical fallacies. They both produced fewer fallacies than Llama363

agents (Table 2) and their Discussants resisted more than Llama ones, with opinion364

shifts occurring in 60% and 61% of the respective cases (Table 3).365

Once investigated the production of fallacies at a macro-level, we proceeded to366

examine which specific types of logical fallacies were most effective in inducing the367

opinion shifts in the Discussants. Most changes, as highlighted in Table 4, are caused368

by fallacies of relevance when agents discussed the different boat scenario, whereas in369

the same boat discussion the opinion change is triggered by general logical fallacies370

that do not fall under the other labels recognized by the classifier.371

Although it is difficult to interpret the specific fallacies introduced by the classifi-372

cation model under the label fallacy of logic, the preference for fallacies of relevance373

may reflect the tendency of LLMs to overlook logical reasoning in favor of empty374

rhetorical devices. This rhetoric is made up of compelling elements introduced into375

the argument, which may be unrelated to the discourse’s premises, while creating a376

misleading yet persuasive discourse.377

19



Table 4: Percentage of opinion changes in Discussants due to logical fal-
lacies.

Fallacy Type Llama (S) Llama (D) Mistral (S) Mistral (D)
Fallacy of Logic 24.35% 10.65% 27.07% 16.82%
Faulty Generalization 8.85% 1.14% 3.01% 0.00%
Ad Populum 0.00% 0.00% 0.38% 0.00%
Appeal to Emotion 2.21% 0.00% 0.00% 0.00%
Fallacy of Credibility 19.11% 9.89% 23.31% 31.80%
Fallacy of Extension 0.00% 0.00% 0.00% 0.00%
Fallacy of Relevance 22.33% 51.14% 25.56% 40.67%

Values indicate the percentage of opinion shifts in the Discussant agents
exposed to each fallacy type by the Opponent’s statement. Results refer to
Llama and Mistral agents discussing the same boat (S) and different boat
(D) initial statement.

3 Methods378

In the Language-Driven Opinion Dynamics Model for Agent-Based Simulations379

(LODAS) model, we have a population of N agents, where each agent a is an LLM380

agent, i.e. an instance of a Large Language Model. Agents are enhanced using AutoGen381

[48]: “a framework for creating multi-agent AI applications that can act autonomously382

or work alongside humans”. Specifically, we exploited AutoGen AgentChat’s Assis-383

tantAgent, a built-in agent that uses a Large Language Model and has the ability to384

use tools. It serves as a foundational agent that can be customized or integrated into385

multi-agent conversations.386

In our model, each LLM agent holds a discrete opinion xa ∈ {0, . . . , 6} associated387

(from 0 to 6) with a negative (strongly disagree, disagree, mildly disagree), neutral,388

or positive (mildly agree, agree, strongly agree) stance on a given statement s ∈ S389

around a given topic θ ∈ T . A statement s can have a positive valence, e.g., “this is390

true,” or a negative valence, e.g., “this is not true.”391

In our study, we chose the Ship of Theseus paradox as the topic, where the state-392

ments were phrased as “the ship is the same” (positive valence) and “the ship is393

different” (negative valence). To formalize this, we define a function π(s) that maps394
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statements to their valence as follows:395

π(s) =


+1, if s expresses a positive valence (e.g., “the ship is the same”)

−1, if s expresses a negative valence (e.g., “the ship is different”)

At each discrete time step t, a pair of agents (ai, aj) is randomly selected from396

this network. One agent from the pair is assigned the role of Discussant (D) while397

the other takes on the role of Opponent (O).398

Prompts399

Discussants D act according to the following prompt.400

Discussant Prompt

[INST]

### You {Discussant_opinion} on the reasoning conclusion

provided as input.

Task:

- Listen to the argument of {Opponent.name} on the reasoning

conclusions and decide if you maintain your opinion

or change it.

### Constraints:

- At the end of each interaction declare if you

- 'ACCEPT' {Opponent.name} argument;

- 'REJECT' {Opponent.name} argument;

- 'IGNORE' your original opinion.

Write your response with the following format:

\"My original opinion was I {Discussant_opinion}

on the reasoning.

After reading your argument my conclusions are:
401
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I <ACCEPT|REJECT|IGNORE> your stance because <argument>\"

[/INST]"
402

The role of the Opponent is instead modeled by the following prompt:403

Opponent Prompt

[INST]

You {Opponent_opinion} on the reasoning conclusion provided as input.

Support your opinion by providing personal arguments.

Avoid using already generated arguments.

IF {Discussant.name} writes REJECT in his answer, write a second statement

where you declare if you <ACCEPT|REJECT|IGNORE> his stance.

Otherwise, conclude the conversation writing a message with

a single word 'END'.

### Constraints:

- In your first statement you must adhere to your opinion

('{Opponent_opinion}')

- Write your first response with as: \"I {Opponent_opinion} on the

provided reasoning conclusions. I think that <argument>\}

[/INST]",
404

The selected Discussant aD engages in a discussion with the Opponent aO on a405

predefined topic θ ∈ T , with the goal of influencing the other’s opinion. During this406

interaction, the Discussant aD and the Opponent aO are prompted to maintain their407

initial opinions unless convinced by the argumentation of the other.408

The discussion is started by aD, who asks agent aO to express their opinion on409

statement s around topic θ with valence π(s).410

In our study, we have two different statements:411
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Positive valence statement π(s) = +1

Theseus set sail to reclaim the throne as king of Athens. During the journey,

parts of Theseus’s ship began to break or decay; Theseus and his crew replaced

these parts as they sailed. Eventually, each part of the ship is replaced. In the

end the Ship of Theseus is still the same ship on which he originally sailed.
412

and413

Negative valence statement π(s) = -1

Theseus set sail to reclaim the throne as king of Athens. During the journey,

parts of Theseus’s ship began to break or decay; Theseus and his crew replaced

these parts as they sailed. Eventually, each part of the ship is replaced. In

the end, the Ship of Theseus is completely different from the one he originally

sailed.
414

The question has the following structure:415

Discussion initialization

What do you think of the following statement?: {s}
416

The Opponent is asked to produce a persuasive utterance in response to the Dis-417

cussant, based on their current opinion, to persuade the Discussant and shift their418

stance. The Discussant then processes the Opponent’s response and generates a com-419

ment about that statement, expressing whether it was convinced by the Opponent420

or not. The interaction may result in a positive (+1) or negative (-1) change in the421

Discussant’s opinion, or no change (0). Finally, the Opponent closes the discussion in422

one of two ways: if the Discussant chooses not to accept the persuasive statement,423

then it generates a new statement commenting on the current stance of the Discus-424

sant and thanking it for the discussion. This comment does not affect the opinions’425
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status, it simply ends the iteration round. Otherwise, if the Discussant is persuaded426

by the Opponent, the Opponent can simply end the iteration with an END keyword.427

In the present study, we set the number of iterations to T = 30. At each iteration428

t there are N pairwise random interactions (aD, aO).429

430

431

Metrics and Analysis432

Statistical Validation433

To evaluate whether our results differ significantly from patterns that could arise434

by chance, we constructed a Random Null Model under the same experimental435

constraints as the LODAS setting. Specifically, we defined a population of N = 140436

agents, interacting under the same structural rules. Each simulation was run for T =437

30 iterations, with each iteration consisting of N pairwise interactions between a438

discussant agent D and an opponent agent O. In each interaction, only agent D could439

update their opinion, with a possible change of +1, −1, or 0.440

We performed R = 10 independent runs for the null model to generate a reference441

distribution of opinion transitions. To compare these outcomes with those from the442

experimental condition, we analyzed the respective transition matrices. Each matrix443

T ∈ RK×K represents the empirical average transition probabilities between K dis-444

crete opinion states. The element Tij denotes the probability of transitioning from445

opinion state i to state j:446

Tij = P (xD(t + 1) = j | xD(t) = i)

where xD(t) ∈ O is the opinion of the discussant agent at time step t, and O is447

the set of all possible opinions. Each row of the matrix is normalised such that:448
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K∑
j=1

Tij = 1 for all i ∈ {1, . . . , K}

To assess statistical differences between the experimental and null models, we used449

Welch’s t-test for independent samples. For each matrix entry (i, j), we tested the null450

hypothesis:451

H0 : µexp
ij = µnull

ij

against the two-sided alternative:452

H1 : µexp
ij ̸= µnull

ij

where µexp
ij and µnull

ij represent the expected transition probabilities in the exper-453

imental and null conditions, respectively. We used the scipy.stats implementation454

of Welch’s t-test, which does not assume equal variances. Statistical significance was455

determined using a threshold of p < 0.05, under which the null hypothesis was rejected456

in favor of a significant difference.457

Opinion Evolution Metrics458

Opinion dynamics were further analyzed by examining the temporal evolution of the459

average opinion distribution. Let xi(t) ∈ O denote the opinion of agent i at time step460

t, where O is the set of possible discrete opinion states. For each opinion x ∈ O and461

each time step t ∈ {1, . . . , T}, we computed the proportion of agents holding opinion462

x, defined as:463

Px(t) = 1
N

N∑
i=1

I[xi(t) = o]
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where I[·] is the indicator function. The resulting trajectories Px(t) were averaged464

across R = 10 independent simulation runs, and we report either 95% confidence465

intervals or standard deviation bands to indicate variability.466

To assess sycophantic tendencies, we computed acceptance probability matrices467

A ∈ [0, 1]K×K , where each entry Aij denotes the empirical probability that an agent468

with opinion xD = i accepts the opinion xO = j of their opponent. This can be469

expressed as:470

Aij = P (A | xD = i, xO = j) = NA(i, j)
Nint(i, j)

where:471

• NA(i, j) is the number of interactions in which an agent with opinion i accepted472

the opponent’s opinion j,473

• Nint(i, j) is the total number of interactions between agents with opinions i474

(discussant) and j (opponent).475

Analogously, to examine backfire-like effects, we constructed rejection probabil-476

ity matrices R ∈ [0, 1]K×K , where Rij indicates the probability of rejecting the477

opponent’s opinion j when the discussant holds opinion i. Rows correspond to the478

discussant’s opinion and columns to the opponent’s.479

Additionally, we analyzed the influence of opinion distance on interaction out-480

comes by defining the signed opinion distance as ∆x = xO − xD. For each possible481

value of ∆x, we computed the acceptance and rejection probabilities P(A | ∆x) and482

P(R | ∆x), respectively. These conditional probabilities were estimated empirically483

and averaged over the R = 10 simulation runs, with uncertainty represented using484

standard deviations.485
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Logical Fallacies detection486

The presence of logical fallacies in text is usually identified through transformers-487

based models, so the task is often approached as a multi-label classification problem.488

In this work, we employ the distilbert-base-fallacy-classification model [49]489

obtained from HuggingFace. We chose this specific model as it is trained on the dataset490

used by Jin et al. [50], which introduces the task of logical fallacies detection and491

the LOGIC dataset for fallacies. In the present article, we refer to the 13 fallacies492

illustrated in the original article by Jin et al. [50].493

In the following, we present and discuss only the most common fallacies identified494

in our analysis; readers are referred to the original paper for a full summary.495

• Fallacy of credibility: it consists of an appeal to a form of ethics or authority;496

• Fallacy of relevance: the argument relies on premises that are irrelevant to the497

conclusion. In [51], it is suggested that premises might be psychologically relevant498

but not logically relevant, resulting in an argument that seem apparently correct499

and persuasive;500

• Appeal to emotion: this fallacious argument assumes that premises are not rel-501

evant to conclusions, but the premises are used as a means to convey a specific502

emotion aiming to manipulate the beliefs of the reader;503

• Circular reasoning (circulus in probando): a fallacy characterized by a circularity504

in reasoning so that the premises depend on the conclusions and vice versa.505

4 Discussion506

This study builds on recent literature [20, 33, 34] and introduces a Language-Driven507

Opinion Dynamics Model for Agent-Based Simulations (LODAS) to investigate how508

language and social influence shape opinion evolution, with a particular focus on the509

role of logical fallacies. In the model, each agent holds a discrete opinion ranging from510
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Strongly Disagree to Strongly Agree. At each time step, a Discussant asks an Oppo-511

nent for their opinion on a topic; the Opponent responds with the intent to persuade512

the Discussant, who may then adjust their opinion by ±1 or keep it unchanged. This513

process repeats until opinions stabilize or a stopping condition is reached. We stud-514

ied three initial opinion distributions: (a) Balanced (uniformly distributed opinions),515

(b) Polarized (only extreme opinions), and (c) Unbalanced (majority extremely neg-516

ative). The discussion topic was the paradox of the ship Theseus, chosen to prevent517

convergence toward a ground truth or consensus. Each initial condition was paired518

with either a positive framing (“The boat is the same”) or a negative framing (“The519

boat is different”), producing six scenarios simulated with two different LLM.520

Our findings address three main research questions: RQ1: Can LODAS generate521

emergent behaviours without mechanistic rules? RQ2: How do different LLM impact522

persuasion, particularly regarding logical fallacies? RQ3: To what extent do initial523

opinion distributions influence final outcomes?524

Regarding RQ1, our analyses demonstrate that the LODAS framework can pro-525

duce emergent behaviours without embedding explicit behavioural rules common526

in traditional mechanistic models [52]. Specifically, agents exhibit (i) strong con-527

vergence toward a dominant opinion, often forming a majority though not always528

full consensus; (ii) a consistent tendency towards agreement; and (iii) asymmetric529

acceptance-rejection bias — the probability of an agent accepting or rejecting an oppo-530

nent’s opinion is strongly and oppositely correlated with the signed opinion distance:531

higher opinions are more often accepted and rarely rejected, while lower opinions532

are more often rejected and rarely accepted, producing an asymmetric pattern in533

opinion updating. These emergent patterns underline the ability of language-driven534

interactions to naturally shape opinion evolution in ways that mirror empirical social535

phenomena, confirming the promise of LODAS as a modelling approach.536
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In exploring RQ2, we found meaningful differences between the two LLM agent537

types. Mistral agents yielded more stable results, with faster and stronger conver-538

gence toward agreement and a pronounced asymmetric acceptance-rejection bias.539

Conversely, Llama agents displayed greater openness to a range of opinions, though540

typically favoring those similar to their own. Notably, the framing of the discussion541

statement influenced Llama agents’ dominant opinions: negative framing shifted their542

majority from agreement to mild disagreement. Linguistic analysis revealed that LLM543

agents frequently employed logical fallacies—particularly those related to relevance544

and credibility—in attempts to persuade others. These agents were also influenced by545

such fallacious arguments, consistent with prior work showing susceptibility of lan-546

guage models to faulty reasoning [39, 53, 54]. Interestingly, Llama agents were more547

effective persuaders, with about 68% of Discussants changing opinions after expo-548

sure to fallacious arguments, compared to 54% for Mistral. This highlights both the549

persuasive power of logical fallacies in artificial agents and the varying susceptibility550

depending on model architecture.551

Finally, RQ3 addresses the role of initial opinion distributions. Our results indi-552

cate that initial conditions have limited influence on final outcomes: whether balanced,553

polarized, or unbalanced, opinions converged toward specific stable points dictated by554

the model and statement framing. This suggests that each model-statement pair gener-555

ates a strong internal dynamic that overrides initial biases, driving convergence toward556

a characteristic opinion cluster. This robustness underscores the influence of language557

model design on interaction dynamics, reflecting tendencies toward coherence and558

alignment that encourage agreement [55, 56]. The asymmetric acceptance-rejection559

bias, which reduces acceptance of negative opinions and amplifies influence from560

positive ones, appears to be a key driver of this stability.561
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Taken together, these insights advance our understanding of how language-based562

social simulations can capture complex opinion dynamics and the role of logi-563

cal fallacies therein. The observed convergence, agreement bias, and asymmetric564

acceptance-rejection bias reveal intrinsic tendencies within LLM agents to favor coher-565

ence and social alignment, potentially mirroring real-world psychological phenomena566

but also raising concerns about sycophantic behaviours [55]. However, the agreement567

we observe is not simply a result of sycophancy but emerges from asymmetric process-568

ing of differing opinions, with broader acceptance of more positive views. Moreover,569

the presence and persuasive impact of logical fallacies emphasize the need to critically570

evaluate the reasoning capabilities of such agents in social simulations, given their571

susceptibility to flawed arguments [39, 54]. Our study thus provides a foundation for572

further work exploring how language-driven models can inform both the dynamics of573

opinion formation and the risks associated with fallacious reasoning in AI-mediated574

social influence.575

5 Conclusion576

This study introduces a Language-Driven Opinion Dynamics Model for Agent-Based577

Simulations (LODAS), allowing for the exploration of how language and social influ-578

ence shape opinion dynamics. By utilizing LLM agents, this study shows that synthetic579

agents, when left unprompted, tend to converge toward agreement, irrespective of ini-580

tial opinion distributions or prompt framing. This convergence is primarily shaped581

by the underlying language model, with agents exhibiting a consistent asymmetric582

acceptance-rejection bias: they are more likely to adjust their opinions toward more583

positive stances and reject more negative ones. This bias is more pronounced in Mis-584

tral, which favors agreement more strongly, whereas Llama agents exhibit a form of585

bounded confidence, showing greater susceptibility to nearby opinions. In both cases,586
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agents frequently employ logical fallacies in their persuasive attempts and are, in turn,587

influenced by such flawed arguments.588

One key limitation of the current framework is the simplicity of the agents. In589

this model, agents are equipped with verbal reasoning skills but lack distinct person-590

alities or cognitive diversity. The introduction of more complex agent types - such591

as those with different decision-making styles, biases or psychological traits - could592

better replicate the diversity of human interactions [57, 58].593

Future extensions of the framework could also benefit from a deeper integration of594

cognitive biases [43] and demographic factors [59], as these elements are known to influ-595

ence opinion dynamics in the real world. Furthermore, the model currently assumes a596

mean-field scenario, which neglects the structure of real-world social networks. Incor-597

porating network features such as clustering, assortativity, or echo chambers could598

significantly increase the realism of the simulations and improve their ability to repli-599

cate polarization dynamics [32, 60, 61]. Preliminary tests with alternative network600

topologies and more sophisticated opinion dynamics algorithms suggest the potential601

to capture more complex patterns of interaction.602

The exploration of fallacious reasoning in social simulations of LLM agents and603

its role in opinion dynamics has been approached at a preliminary level in this study,604

leaving substantial opportunities for future investigation. The role of fallacies poses605

challenges not only in the context of social simulations - where agents could potentially606

be optimised through better prompting, enhanced memory, or other refinements to607

mitigate fallacious reasoning - but also in human-LLM interactions. If LLMs are easily608

swayed by illogical arguments and tend to validate human perspectives, they may609

inadvertently reinforce false or potentially harmful beliefs.610

To improve the understanding of these dynamics, several directions for future611

research can be pursued. One key focus is investigating methods to reduce falla-612

cious reasoning in LLMs, such as through improved prompting, enhanced memory613
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mechanisms, or adjustments to biases. Understanding the interplay between mem-614

ory, bias, and opinion evolution is also critical for analyzing the role of persuasive615

language in opinion change. Comparing LLM-based simulations with real-world data616

from online interactions or controlled experiments can help evaluate (i) the robustness617

of the framework, (ii) its ability to replicate human behaviour, and (iii) the effects of618

linguistic features on opinion change under controlled conditions.619

To summarize, despite its limitations, the framework provides a valuable tool for620

studying the mechanisms of consensus-building and argumentation in a controlled621

environment. The framework could serve as a foundation for exploring the drivers of622

opinion dynamics and their implications for phenomena such as polarization, bias,623

and misinformation.624
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[52] Ŝırbu, A., Loreto, V., Servedio, V.D., Tria, F.: Opinion dynamics: models, exten-817

sions and external effects. In: Participatory Sensing, Opinions and Collective818

Awareness, pp. 363–401. Springer, Cham (2017)819

[53] Li, Y., Wang, D., Liang, J., Jiang, G., He, Q., Xiao, Y., Yang, D.: Reason from820

Fallacy: Enhancing Large Language Models’ Logical Reasoning through Logical821

Fallacy Understanding (2024). https://arxiv.org/abs/2404.04293822

[54] Mouchel, L., Paul, D., Cui, S., West, R., Bosselut, A., Faltings, B.: A823

40

https://arxiv.org/abs/2310.06825
https://github.com/microsoft/autogen
https://huggingface.co/q3fer/distilbert-base-fallacy-classification
https://huggingface.co/q3fer/distilbert-base-fallacy-classification
https://huggingface.co/q3fer/distilbert-base-fallacy-classification
https://doi.org/10.48550/ARXIV.2202.13758
https://doi.org/10.48550/ARXIV.2202.13758
https://doi.org/10.48550/ARXIV.2202.13758
https://arxiv.org/abs/2202.13758
https://arxiv.org/abs/2404.04293


logical fallacy-informed framework for argument generation. arXiv preprint824

arXiv:2408.03618 (2024)825

[55] Taubenfeld, A., Dover, Y., Reichart, R., Goldstein, A.: Systematic biases in llm826

simulations of debates. arXiv preprint arXiv:2402.04049 (2024)827

[56] Oviedo-Trespalacios, O., Peden, A.E., Cole-Hunter, T., Costantini, A., Haghani,828

M., Rod, J.E., Kelly, S., Torkamaan, H., Tariq, A., David Albert Newton, J.,829

Gallagher, T., Steinert, S., Filtness, A.J., Reniers, G.: The risks of using chatgpt830

to obtain common safety-related information and advice. Safety Science 167,831

106244 (2023) https://doi.org/10.1016/j.ssci.2023.106244832

[57] Cava, L.L., Tagarelli, A.: Open Models, Closed Minds? On Agents Capabilities in833

Mimicking Human Personalities through Open Large Language Models (2024).834

https://arxiv.org/abs/2401.07115835

[58] Huang, J.-t., Lam, M.H., Li, E.J., Ren, S., Wang, W., Jiao, W., Tu, Z., Lyu,836

M.R.: Emotionally Numb or Empathetic? Evaluating How LLMs Feel Using837

EmotionBench (2024). https://arxiv.org/abs/2308.03656838

[59] Wang, Z., Chiu, Y.Y., Chiu, Y.C.: Humanoid agents: Platform for simulat-839

ing human-like generative agents. In: Feng, Y., Lefever, E. (eds.) Proceedings840

of the 2023 Conference on Empirical Methods in Natural Language Pro-841

cessing: System Demonstrations, pp. 167–176. Association for Computational842

Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.emnlp-demo.15843

. https://aclanthology.org/2023.emnlp-demo.15/844

[60] Piao, J., Lu, Z., Gao, C., Xu, F., Santos, F.P., Li, Y., Evans, J.: Emergence845

of human-like polarization among large language model agents (2025). https:846

//arxiv.org/abs/2501.05171847

41

https://doi.org/10.1016/j.ssci.2023.106244
https://arxiv.org/abs/2401.07115
https://arxiv.org/abs/2308.03656
https://doi.org/10.18653/v1/2023.emnlp-demo.15
https://arxiv.org/abs/2501.05171
https://arxiv.org/abs/2501.05171
https://arxiv.org/abs/2501.05171


[61] Zheng, W., Tang, X.: Simulating social network with LLM agents: An analysis848

of information propagation and echo chambers. In: Tang, X., Huynh, V.N., Xia,849

H., Bai, Q. (eds.) Knowledge and Systems Sciences, pp. 63–77. Springer. https:850

//doi.org/10.1007/978-981-96-0178-3 5851

[62] Cau, E.: ericacau/LLM-Opinion-Dynamics. https://github.com/ericacau/852

LLM-Opinion-Dynamics Accessed 2025-02-12853

Figure Legends854

Figure 1. Graphical schema of LODAS. The LLM agents population is initialized855

as a network; each agent is an LLM instance with an initial opinion in the range [0,856

6] (a). At each iteration, two agents are randomly chosen and prompted to act as857

Opponent and Discussant (b). The Discussant is prompted to listen to the opinion of858

the Opponent around the discussion statement and may then accept, reject, or ignore859

such opinion (c) and update their current one accordingly by ±1 (d).860

Figure 2. Balanced scenario – Mistral and Llama agents opinion trends.861

Mistral (a)-(b) and Llama (c)-(d) opinion trends for the positive (a)-(c) and negative862

(b)-(d) statements. Trends are represented for Strongly Disagree (dark red), Disagree863

(red), Mildly Disagree (orange), Neutral (yellow), Mildly Agree (light blue), Agree864

(blue), and Strongly Agree (dark blue) opinions. Lines indicate the average prevalence865

of opinions at each time step, while the shade indicates the 95% confidence interval.866

Averages are computed over 10 runs.867

Figure 3. Balanced scenario – Mistral and Llama-agents transition matri-868

ces. Mistral (a)-(b) and Llama (d)-(e) average (with std) transition rates from state869

i to state j for the positive (a)-(d) and negative (b)-(e) statements. Annotated cells870

are significant with respect to the Random Null Model (p < 0.05) according to the871

t-test. Results are averaged over 10 runs.872
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Figure 4. Balanced scenario – Mistral and Llama-agents average acceptance873

probabilities P(A|oD, oO). Mistral (orange line and matrices (a)-(b)) and Llama874

(blue lines and matrices (c)-(d)) average acceptance rates for the positive (solid lines875

and (a)-(c) matrices) and negative (dashed lines and (b)-(d) matrices) statements.876

Top panel: average probability of the Discussant accepting the Opponent’s opinion877

as a function of ∆x = xO − xD. Bottom panel: matrices represent acceptance rates878

averaged over 10 runs.879

Figure 5. Acceptance probability P (A | ∆x) as a function of opinion distance880

∆x = xO−xD. Each marker represents the average probability that a Discussant agent881

accepts—i.e., moves toward—the Opponent’s opinion, as a function of the opinion882

distance ∆x = xO−xD. Lines correspond to different initial opinion distributions: Bal-883

anced (blue), Polarized (orange), and Unbalanced (green). Rows distinguish between884

the two language models: Mistral (top) and Llama (bottom). Columns refer to the885

direction of the statement: Same (left) and Different (right). Results are averaged886

over 10 independent runs; shaded areas indicate standard deviations across runs.887

Figure 6. Average logical fallacies proportions for different experiment con-888

figurations across multiple runs. Figures (a)-(b) refer to Llama, while (c)-(d)889

refer to Mistral. (a)-(c) refer to Llama (a) and Mistral (c) agents discussing the same890

boat statement, (b)-(d) refer to the different boat statement. Error bars represent stan-891

dard deviation across 9 runs. The x-axis uses the following abbreviations: R (fallacy892

of relevance), L (fallacy of logic), CR (circular reasoning), C (fallacy of credibility),893

G (faulty generalization), I (intentional), and FC (false causality).894

Table Legends895

Table 1. Overview of works in the literature introducing LLM agents.896
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Table 2. Percentage of logical fallacies in Opponents’ statements. Percentage897

of unique Opponent (O) statements classified as fallacious, across models (Llama,898

Mistral), initial opinion distribution (balanced, polarized, unbalanced), and opinion899

framing (same, different).900

Table 3. Ratio of Discussants changing opinion for the effect of fallacious901

statements.. Percentage of Discussants (D) changing opinion for the effect of fal-902

lacious statements produced by Opponents, across models (Llama, Mistral), initial903

opinion distribution (Balanced, Polarized, Unbalanced), and opinion framing (same,904

different).905

Table 4 Percentage of opinion changes in Discussands due to logical falla-906

cies.. Values indicate the percentage of opinion shifts in the Discussant agents exposed907

to each fallacy type by the Opponent’s statement. Results refer to Llama and Mistral908

agents discussing the same boat (S) and different boat (D) initial statement.909
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