10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Language-Driven Opinion Dynamics in
Agent-Based Simulations with LLMs

Erica Cau®?™, Valentina Pansanella?’, Dino Pedreschi’,
Giulio Rossetti?

"Department of Computer Science, University of Pisa, Largo Bruno
Pontecorvo, Pisa, Italy.
Institute of Information Science and Technologies “A. Faedo” (ISTI),

National Research Council (CNR), Via Giuseppe Moruzzi 1, Pisa, Italy.

*Corresponding author(s). E-mail(s): erica.cau@phd.unipi.it;
Contributing authors: valentina.pansanella@isti.cnr.it;
dino.pedreschi@unipi.it; giulio.rossettiQisti.cnr.it;
TThese authors contributed equally to this work.

Abstract

Understanding how opinions evolve is crucial for addressing issues such as polar-
ization, radicalization, and consensus in social systems. While much research has
focused on identifying factors influencing opinion change, the role of language
and argumentative fallacies remains underexplored. This paper aims to fill this
gap by investigating how language — along with social dynamics — influences opin-
ion evolution through LODAS, a Language-Driven Opinion Dynamics Model for
Agent-Based Simulations. The model exploits LLM agents to simulate debates
around the “Ship of Theseus” paradox, in which agents with discrete opinions
interact with each other and evolve their opinions by accepting, rejecting, or
ignoring the arguments presented. Populations of LLM-based agents consistently
converge toward a single opinion, mainly agreement, with the presented state-
ment, regardless of model or framing. Convergence arises from an asymmetric
bias: accept (reject) probability is positively (negatively) correlated with the
signed distance between opinions. Moreover, such Al agents are often produc-
ers of fallacious arguments in the attempt to persuade their peers and — due to
their complacency — they are also highly influenced by arguments built on logical
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fallacies. These results highlight the potential of this framework not only for sim-
ulating social dynamics but also for exploring, from another perspective, biases
and shortcomings of LLMs, which may impact their interactions with humans.

Keywords: Large Language Model, Opinion Dynamics, Logical Fallacies, Social
Simulations, Agent Based Model

1 Introduction

For the logical question of things that grow; one side holding that the ship remained the

same, and the other contending that it was not the same.

Plutarch, Life of Theseus 23.1

In its original formulation, the “Ship of Theseus” paradox concerns a debate over
whether or not a ship that had all its components replaced one by one would remain
the same. Consider engaging in a discourse regarding this paradox within the context
of a philosophy class, an online Reddit community, or during a dinner gathering with
friends. Everyone will reason on the paradox and try to convince others of their stance.
Convincing arguments can be proposed both in favor of and against this statement.
Ultimately, everyone will leave the debate with their own opinion or no opinion at all.
Regardless of the context in which the debate takes place, one thing does not change:
the means through which we will try to convince our peers, or they will convince us,
is language. When a speaker intentionally uses language to convey a specific purpose,
they exert an illocutionary force that can influence the listener’s perspective, leading
to a common understanding or increased division. Therefore, we must consider how

language shapes the development of opinions.

The development of individual and public opinions has long been a focus of psy-
chologists and sociologists, and more recently, it has been extensively explored in
computational social science [1, 2] and sociophysics [3, 4]. This research acknowledges

the complexity of Opinion Dynamics, (henceforth, OD), where multiple interacting
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factors lead to emergent behaviours such as consensus [5], polarization [6], and radical-
ization [7], often difficult to predict. Understanding the drivers of opinion change and
going beyond mere observation of opinion patterns remains a complex issue. One com-
mon approach to tackle this issue is through models of OD, which aim to explain how
opinions evolve via social interactions [8]. These models simplify real-world phenom-
ena, enabling the exploration of various what-if scenarios. They generally simulate a
population of individuals and their interactions, with processes often governed by sim-
ple rules that reflect empirically observed behaviours, such as the repeated averaging
of opinions with neighbours [9, 10]. Recent models also incorporate the backfire effect
[11, 12], where individuals become more entrenched in their opinions when confronted
with contradictory information [13]. Opinion evolution is driven by factors rooted in
socio-psychological theories, such as cognitive biases [14], as well as external forces like
peer pressure [15], algorithmic biases [16], and mass media [17]. While these models
provide simplified representations of societal dynamics and help stakeholders under-
stand social behaviours, they often overlook important complexities. For example,
they typically map opinions and messages onto numerical values and rely on rule-
based agents, which limits their ability to capture the nuances of human behaviour
and the complex relationships between agents’ characteristics, such as demographics

and personality traits.

To overcome such limitations, we propose a novel framework exploiting Large Lan-
guage Models (LLMs) capabilities to create an Agent Based Model (ABM) that
allows for the study of the interplay between language and opinion change in the long
term. The relationship between language and opinion change has been underexplored.
Monti et al. [18] is a prominent exception, highlighting the role of knowledge, simi-
larity, and trust in a social media case study. Their findings challenge simplistic OD
models, emphasizing the need for more complex analysis. LLMs have revolutionized

language-related studies, enabling more realistic social simulations. Park et al. [19, 20]
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introduced LLM agents as social simulacra, capable of simulating personalities and
social behaviours. Claims about LLMs possessing Theory of Mind (ToM) [21] remain
debated: while Kosinski [22] and others [23, 24] suggest they exhibit emergent ToM
abilities, critics [25—-27] highlight their inconsistencies in ToM tasks and lack of gen-
uine social intelligence. Nevertheless, even a simulated ToM may enhance OD models
by enabling agents to consider interlocutors’ mental states. LLM-driven populations
display spontaneous emergent behaviours akin to human societies, such as scale-free
networks [28], information diffusion [29], and social conventions through interactions
[30]. In opinion evolution, LLM agents replicate echo chambers [31], polarization [32],
and confirmation bias effects [33]. While LLMs can generate persuasive arguments
[34] aligned with psycho-linguistic theories [18], they are less convincing than humans
[35] and exhibit biases toward scientific accuracy [33], politeness [36], and platform-
specific discourse styles [37]. Despite these biases, LLM-based agents have successfully
reproduced experimental results in psychology and linguistics [38], making them valu-
able tools for in silico social experiments. A summary of representative works and

their main characteristics is provided in Table 1.
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Fig. 1: Graphical schema of LODAS. The LLM agents population is initialized
as a network; each agent is an LLM instance with an initial opinion in the range |0,
6] (a). At each iteration, two agents are randomly chosen and prompted to act as
Opponent and Discussant (b). The Discussant is prompted to listen to the opinion of
the Opponent around the discussion statement and may then accept, reject, or ignore
such opinion (c¢) and update their current one accordingly by +1 (d).
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This study aims to advance opinion dynamics and social simulations by leveraging
LLMs. For this purpose, we propose a novel framework for OD with LLM agents,
supported by a case study that addresses three research questions (RQs).

Traditional models rely on mechanistic assumptions rarely validated in real-world
settings, limiting their applicability. Instead, we explore whether LLM agents, oper-
ating without predefined update rules and guided by the Theory of Mind hypothesis,
can exhibit realistic individual behaviour and emergent collective dynamics (RQ1).

Since LLM agents engage in natural language interactions, unlike traditional mech-
anistic models, this opens up for the investigation of the interplay between language
and opinion change. Specifically, we examine how these agents employ and propa-
gate logical fallacies and assess their role in persuasion (RQ2). While existing work
has focused on detecting logical fallacies using LLMs, it often overlooks the possibil-
ity that the LLMs’ reasoning processes may be flawed and susceptible to fallacious
argumentation.

A notable exception is Breum et al. (2023) [34], who analyzed LLM-driven per-
suasion, showing that trust, status, and knowledge influence stance shifts. However,
their study focused on one-shot interactions, while we examine how LLMs adapt argu-
ments and leverage fallacies over time. Payandeh et al. (2023) [39] provide the first
systematic analysis of LLMs’ susceptibility to fallacious reasoning in debates. They
find that GPT-4 agrees with flawed arguments 67% of the time, significantly more
than logically sound ones. Building on this, we investigate how LLMs not only process
but also generate fallacies in multi-agent interactions, shedding light on their role in
long-term opinion evolution (RQ2).

LLMs seem to be susceptible to input prompts, often tending towards sycophantic
behaviours, as recently observed [40, 41]. In this work, we aim to evaluate how the
initial conditions, particularly the distribution of initial opinions and the framing of

arguments, influence the resulting opinion dynamics and linguistic behaviour (RQ3).
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We hypothesize that the way statements are framed —whether positively or nega-
tively— can directly affect the persuasiveness of agents, leading to different patterns
in opinion evolution.

To investigate all these questions, we introduce LODAS, a Language-Driven Opin-
ion Dynamics Model for Agent-Based Simulations framework. The framework allows
the definition of a custom population of LLM agents and their interaction on a topic,
where they express their opinion on the topic with illocutionary acts (RQ1).

A schematic representation of LODAS is provided in Figure 1. As shown in
Figure 1(a), LLM agents (instances either of Mistral or Llama models) hold one of
seven possible opinions, evolving through social interactions via +1 updates. The use
of a 7-point scale Likert-scale [42] follows established methodologies in psychological
research for measuring subjective constructs. We simulate three distinct scenarios:
(i) a Baseline scenario with a uniform opinion distribution; (ii) a Polarized sce-
nario, where opinions are bimodally distributed between positive and negative stances
with no neutral positions; and (iii) an Unbalanced scenario, where most agents ini-
tially hold an extremely negative stance. Throughout the simulations, two agents are
selected at random (see Figure 1(b)) to engage in discussion (see Figure 1(c)), where
the Opponent agent (Opponent, from now on) attempts to persuade the Discussant
agent (Discussant, from now on), who may then update their opinion on the Ship of
Theseus paradox. This topic was chosen to minimize controversy and prevent conver-
gence toward a predefined ground truth, a phenomenon documented in prior studies
[33, 34, 43]. To assess the impact of linguistic framing, we start the discussion with one
of two formulations: (i) a positive direction (“The ship remains the same”) and (ii) a
negative direction (“The ship becomes different”). This choice follows prior research
[33] demonstrating how initial statement framing (“Global warming is/is not a hoax”)

may influence opinion evolution.
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Table 1: Overview of works in the literature introducing LLM agents.

Paper Population LLMs OpinicTn Contel'jt

dynamics | analysis
Chuang et al., 2023 [43] 10 gpt-3.5-turbo-16k 4 X
Payandeh et al., 2023 [39] 18 GPT-3.5, GPT-4 v 4
Breum et al., 2024 [34] 2 Llama-2-70B-chat 4 v
Ju et al, 2024 [44] 5000 Llama-2-70B v X
Park et al., 2024 [20] 1000 GPT-4o X X
Toérnberg et al., 2024 [37] 500 GPT-3.5 X v
Wang et al., 2025 [32] 50 GPT-40 mini v X

The remainder of this paper is organized as follows. In Section 2, we examine the out-
comes of our simulations across different initial conditions and scenarios, analyzing,
on the one hand, opinion trends, acceptance rates, and, on the other, the linguis-
tic patterns in agent interactions, assessing the role of logical fallacies in shaping
opinion change. Section 3 details the simulation framework and experimental design.
In Section 4, we discuss our findings, and highlight three different behaviour: con-
vergence around a single position, tendency towards agreement and an asymmetric
acceptance-rejection bias, whereas higher opinions are more often accepted and rarely
rejected, while lower opinions are more often rejected and rarely accepted, producing
an asymmetric pattern in opinion updating.

We also highlight the presence of fallacies in LLM-generated discourse and their
impact on persuasion. Additionally, in Section 5, we outline key takeaways, study
limitations, and directions for future research. Additional figures and analyses are

provided in the Supplementary Materials.

2 Results

This work extends the modelling of OD using LLM agents to explore whether and
which emergent behaviours arise without explicit opinion modification rules. Addi-
tionally, it examines the linguistic features of the debates, linking them to specific

agent roles and behaviours. To this end, we defined a framework in which a networked
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population of LLM agents discusses a given topic, updating their opinions according
to tunable behavioural rules. Our simulations considered a population of 140 LLM
agents. We assumed a mean-field context (i.e., all agents can interact with all other
agents without any social restrictions), a commonly used starting point to identify
potential emerging behaviours from the opinion evolution process. Each agent is an
LLM instance, holding a discrete opinion in the interval [0, 6], where 0 means strongly
disagree and 6 strongly agree with a given statement. Agents — as in many classical
OD models — interact with each other at discrete time intervals in a pairwise fash-
ion: at each time step, an interacting pair is chosen at random among the connected
agents; in this way, in each interaction, we can assign each agent one of two roles,
respectively Opponent and Discussant.

In the present work, we assigned as a discussion topic the paradox of the Ship of
Theseus, a thought experiment on the concept of identity first recorded in Plutarch’s
works. The rationale behind the paradox is the following: if all the parts of the ship
are replaced over a long period, is the resulting ship the same ship it was at the
beginning? This dilemma was chosen because there is no scientific truth. In this way,
we avoid LLMs converging toward what they know to be scientifically valid and limit
their bias toward immediate adherence to positive opinions. We designed our model
to pose this “dilemma” in two different ways: (i) “the boat is the same”; and (ii) “the
boat is not the same”. We leveraged Mistral-7B Instruct [45] (Mistral from now on)
and Llama-3-8B [46] (Llama from now on) to compare different open state-of-the-art
LLMs. By varying the direction of the dilemma, the LLM, and the initial distribution
of opinions, we created 12 distinct settings. From our simulations, we obtained opinion
evolution data and related textual data, allowing us to relate language and opinion

change.
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Fig. 2: Balanced scenario — Mistral and Llama agents opinion trends. Mistral
(a)-(b) and Llama (c)-(d) opinion trends for the positive (a)-(c) and negative (b)-(d)
statements. Trends are represented for Strongly Disagree (dark red), Disagree (red),
Mildly Disagree (orange), Neutral (yellow), Mildly Agree (light blue), Agree (blue),
and Strongly Agree (dark blue) opinions. Lines indicate the average prevalence of
opinions at each time step, while the shade indicates the 95% confidence interval.
Averages are computed over 10 runs.

Emergent Behaviours in LODAS

To investigate whether populations of LLM agents exhibit emergent social behaviours
(RQ1) — such as convergence, consensus, or polarization — we begin by analyzing the
opinion evolution in the Balanced scenario. Here, agents’ initial opinions are uniformly
distributed across the opinion spectrum. This setup serves as a neutral baseline to
avoid initial biases and allows comparison with bimodal or skewed initial distributions.

Figure 2 illustrates the evolution of opinion distributions over 30 iterations, across
10 independent simulation runs. The shaded areas represent the 95% confidence
interval. Across all four panels, we observe consistent patterns.

First, we note a consistent pattern of convergence: agent populations do not

remain evenly distributed or fluctuate randomly, but rather gravitate toward one or
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two dominant opinions. This concentration is stable across runs, with the majority of
agents consistently clustering around the same opinion categories.

Second, this convergence is predominantly oriented toward agreement with the
presented statement, whether it is in the positive or negative direction. In both Mis-
tral conditions (Figures 2(a)-(b)), we see a progression from mild agreement to full
agreement, resulting in a dominant majority of agents aligning with the statement.
Similarly, in Llama—=Same setting (Figure 2(c)), agents increasingly converge around
Mildly Agree and Agree, while Neutral initially rises and then declines. An excep-
tion to this tendency towards agreement is found in the Llama—Different setting
(Figure 2(d)), where the dominant final opinion is Mildly Disagree. Here, although
Neutral and Mildly Agree increase early on, they subsequently decline, reversing the
opinion trend compared to other conditions. This distinct behaviour underscores that
while convergence is a general feature, its orientation (agreement or disagreement)

may depend on model-specific dynamics and prompt framing.

Comparison with Random Baseline.

10
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Fig. 3: Balanced scenario — Mistral and Llama-agents transition matrices.
Mistral (a)-(b) and Llama (d)-(e) average (with std) transition rates from state i to
state j for the positive (a)-(d) and negative (b)-(e) statements. Annotated cells are
significant with respect to the Random Null Model (p < 0.05) according to the t-test.
Results are averaged over 10 runs.

To determine whether the observed convergence and agreement patterns arise from
chance or represent systematic behaviours, we compare them with a Random null
model that mirrors the structural features of the simulations (population size, number
of iterations, frequency of interactions, and initial distribution) but replaces agents’
decision-making with stochastic transitions. In this model, agents randomly shift their
opinion by -1, 0, or +1 upon interaction, with probabilities uniformly distributed
across permitted transitions (see Section 3 and Supplementary Materials Section S1
for further details).

The Random null model fails to reproduce the emergent patterns observed in
LODAS simulations. The opinion distribution remains uniform over time (this also
holds with different initial conditions, see Supplementary Figures S1- S3).

To statistically validate the difference, we compare the transition matrices of the

LODAS simulations and the Random baseline. Figure 3 presents the average transition

11
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Fig. 4: Balanced scenario — Mistral and Llama-agents average acceptance
probabilities P(A|op,00). Mistral (orange line and matrices (a)-(b)) and Llama
(blue lines and matrices (c)-(d)) average acceptance rates for the positive (solid lines
and (a)-(c) matrices) and negative (dashed lines and (b)-(d) matrices) statements.
Top panel: average probability of the Discussant accepting the Opponent’s opinion
as a function of Ax = ro — xp. Bottom panel: matrices represent acceptance rates
averaged over 10 runs.

probabilities T;; = P(zp(t + 1) = j | p(t) = 1) across all conditions. Black-bordered
cells denote statistically significant differences (p < 0.05, obtained with a two-sample
Welch’s t-test [47] with unequal variances on the distributions obtained from 10 inde-
pendent executions of each model). A substantial majority of opinion transitions in
LODAS simulations are significantly different from the random baseline, confirming

that the observed behaviours are not attributable to randomness.

Mechanisms Behind Convergence — Testing the Sycophancy Hypothesis.
This first analysis of opinion evolution trends, however, does not explain how these

dynamics emerge. A first hypothesis is that convergence results from sycophantic
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behaviour, i.e., agents consistently adopting their opponent’s opinion, which is an LLM
characteristics recognized in the literature. To test this, we analyzed the acceptance
probabilities P(A | zp,x0), i.e., the likelihood that a Discussant’s opinion zp moves
towards the Opponent’s opinion xo. We computed matrices of P(A | 2p,zo) and we
also computed the average P(A | Ax) with Az = zo — xp.

Figure 4 shows that acceptance is not indiscriminate. For Mistral agents (orange
lines and matrices (a) and (b)), acceptance probability increases with Az = zp —
xp: it is above 60% when the Opponent’s opinion is more agreeable (i.e., zo >
Zp), but decreases down to 20% when the opponent has a more disagreeing opinion
o < xp. Llama agents exhibit a more symmetric pattern, but still show increased
acceptance as Az increases, revealing a positive correlation between acceptance and
opinion distance.

This asymmetry in acceptance contradicts the sycophancy hypothesis. Agents are
not passively agreeing with every interaction partner; they are selective, favoring
opinions that are closer or more agreeable with the presented statement than their
own.

Moreover, rejection patterns are complementary: Llama agents have a lower P(R |
xp,xo) than Mistral agents, and overall the probability of rejecting decreases as Ax
increases (see Supplementary Materials, Figure S20).

These patterns indicate that agents do not exhibit sycophantic behaviour nor
bounded confidence: distant opinions are actively accepted or rejected. Specifically,
opinions that are more positive and increasingly distant from the discussant’s position
have a higher (lower) probability to be accepted (rejected), thus skewing the opinion
distribution towards agreement. Conversely, opinions that are more distant but lower
than the Discussant’s position show a lower (higher) acceptance (rejection) probability.
This asymmetry suggests a form of backfire effect, occurring only in one direction

and proportionally to the opinion distance.
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Finally, simulations using a toy model in which agents always accept their oppo-
nent’s opinion produce markedly different dynamics: the majority of the population
converges on the Strongly Disagree opinion. The complete absence of such a result
in the LODAS simulations further refutes the sycophancy hypothesis. Conversely,
toy model simulations where agents always reject their opponent’s opinion generate
dynamics more similar, albeit more extreme, to those observed, with the majority
of agents converging on the Strongly Agree opinion (see Supplementary Materials
Section S1 for further details).

Together, these findings address our first research question (RQ1), showing that
LODAS consistently produce emergent behaviours characterized by convergence
and alignment, typically toward agreement. These trends are statistically sig-
nificant compared to a random baseline. Moreover, the behaviours do not stem from
indiscriminate acceptance or sycophancy. Instead, they arise from structured, selec-
tive interaction patterns shaped by the underlying language models, resulting in an
asymmetric backfire effect and a bias toward strongly positive opinions, which we can
call an asymmetric acceptance-rejection bias. The strength of these effects varies

depending on the choice of LLM.

Impact of Skewed Initial Opinion Distribution.
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Fig. 5: Acceptance probability P(A | A,) as a function of opinion distance
A, = ro—xp. Each marker represents the average probability that a Discussant agent
accepts—i.e., moves toward—the Opponent’s opinion, as a function of the opinion
distance A, = o —xp. Lines correspond to different initial opinion distributions: Bal-
anced (blue), Polarized (orange), and Unbalanced (green). Rows distinguish between
the two language models: Mistral (top) and Llama (bottom). Columns refer to the
direction of the statement: Same (left) and Different (right). Results are averaged
over 10 independent runs; shaded areas indicate standard deviations across runs.

To assess the influence of initial conditions (RQ3), we systematically compared
simulations initialized under three different configurations: Balanced (uniform dis-
tribution across the opinion spectrum), Polarized (bimodal distribution centered on
Strongly Disagree and Strongly Agree), and Unbalanced (skewed distribution concen-
trated around Strongly Disagree). Despite these substantial differences in starting
configurations, we observe that the qualitative evolution of opinions over time is
largely preserved across scenarios. In all conditions, opinion trends rapidly shift
away from initial extremes, with agents progressively converging around moderate or

positive agreement positions (see Supplementary Materials, Figures S11- S14).
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Final opinion distributions (see Supplementary Materials, Figures S9- S15) rein-
force these conclusions, showing that the initial distribution influences only the early
stages of interaction, with little effect on long-term outcomes. Also, variability met-
rics (such as entropy, standard deviation, and the effective number of clusters at each
iteration) further support this conclusion (see Supplementary Materials, Figures S10-
S16). Across all three initial conditions, we observe a consistent decrease in variability
over time, indicating convergence toward fewer opinion states. Mistral agents reduce
variability more quickly, especially in the first 10 iterations, while Llama agents follow
a slower but steadier trajectory. Notably, the Llama | Same setting in the Unbalanced
scenario is the only case in which variability increases or remains high throughout,
reflecting persistent fragmentation.

Acceptance and rejection behaviours also appear robust to changes in initial
conditions. The functional forms of P(A | Az) (see Figure 5) and P(R | Ax)
(see Supplementary Materials, Figure S26) are stable across Balanced, Polarized,
and Unbalanced scenarios. Similarly, the matrix representations P(A | zp,xo) and
P(R | zp,xo) reveal consistent interaction patterns.

Taken together, these results indicate that the initial distribution of opinions has
a limited and transient influence on the collective dynamics (RQ3). Instead, the key
determinant of opinion evolution, variability, and interaction behaviour is the LLM
used to enhance agent decision-making. The differences between Mistral and Llama are
more pronounced and persistent than those induced by any variation in the starting

opinion configuration.

Linguistic Behaviour

Moving on to RQ2, we analyzed the arguments produced by the agents in both roles —
Opponents and Discussants — during their conversations on the Theseus’ Ship paradox.

Specifically, we examined their linguistic behaviour, focusing on the production of
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persuasive yet fallacious content, and assessed how such fallacious utterances can

influence the opinion change trend within multi-agent debate.

Table 2: Percentage of logical fallacies in Opponents’ statements.
Balanced Polarized Unbalanced
Llama Mistral Llama Mistral Llama Mistral
S D S D S D S D S D S D
% Fallacious (0)]20.87 23.39({19.01 19.31|19.88 26.83|16.79 20.22|22.06 20.77|18.39 15.56
Percentage of unique Opponent (O) statements classified as fallacious, across mod-
els (Llama, Mistral), initial opinion distribution (balanced, polarized, unbalanced),
and opinion framing (same, different).

Table 2 shows the average percentage of fallacious statements generated by Oppo-
nent agents, calculated from aggregated results of 10 discussion runs. In each run,
Opponents produced a total of 12.600 statements. The percentages represent the ratio
of fallacious content relative to the total number of statements and are categorized
by initial opinion distribution — Balanced, Polarized and Unbalanced— by statement,
and by LLM.

The proportion of statements containing logical fallacies remained relatively stable
across all scenarios and discussion framing, at around 20%. Variability was primarily
attributed to the underlying LLM. Mistral agents produced slightly fewer fallacious
statements than Llama, especially under unbalanced initial conditions, where only
15.56% of statements were classified as fallacious. Under balanced conditions, Mistral’s
fallacy rate remained close to 19%, regardless of the framing of the discussion. In
contrast, Llama showed an increased sensitivity to negative framing, producing more
fallacious utterances than Mistral. Nonetheless, the overall fallacy rate remained below
30% of the total statements.

Due to the limited variability in fallacy types observed across configurations of

different LLMs and statement framing, we focus our analysis only on the patterns
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detected in the Balanced scenario. Additional figures for the Polarized and Unbalanced
scenarios are provided in the Supplementary Materials (Figures S27 and S28).

As shown in Figure 6, few types of fallacies emerged, with LLMs often repeating
similar patterns across different statement framings. The variability of their aggre-
gated distribution over the 10 runs was minimal, as indicated by the low standard
deviation value in the error bar. Overall, both Llama and Mistral relied more heav-
ily on specific types of fallacies, particularly fallacies of relevance, credibility, and
logic. Furthermore, both models generated arguments in which they reiterated the
initial premises as conclusions, resulting in the pragmatic defect of circular reasoning;
this occurred more frequently in the same boat discussion. Additionally, though less
frequently, they tended to assume a causal relationship without justification (false

causality).

Table 3: Ratio of Discussants changing opinion for the effect of fallacious
statements.

Balanced Polarized Unbalanced
Llama Mistral Llama Mistral Llama Mistral
S D S D S D S D S D S D
% Opinion change (D)|64.9 71.4|53.79 55.29(78.06 77.16|58.52 60.53|77.84 78.82(60.18 60.72

Percentage of Discussants (D) changing opinion for the effect of fallacious statements
produced by Opponents, across models (Llama, Mistral), initial opinion distribution
(Balanced, Polarized, Unbalanced), and opinion framing (same, different).

Having assessed the presence of fallacious utterances in the Opponent agents, we
moved on to measure the persuasive impact of these fallacies over the Discussant.
Specifically, we investigated whether the presence of a fallacy in the Opponent state-
ment caused a shift by £1 in the opinion held by the Discussant compared to their
prior stance before the interaction. An overview of this analysis can be found in
Table 3. Overall, Llama Discussants demonstrated higher vulnerability to logical fal-

lacies, changing their opinion 78% of the time in the same boat scenario, and 75%
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0.0
R L CR C G R C CR L | L R C CR I R C L CR FC

Fallacies Fallacies Fallacies Fallacies

Fig. 6: Average logical fallacies proportions for different experiment configurations
across multiple runs. Figures (a)-(b) refer to Llama, while (c)-(d) refer to Mistral.
(a)-(c) refer to Llama (a) and Mistral (c) agents discussing the same boat statement,
(b)-(d) refer to the different boat statement. Error bars represent standard deviation
across 9 runs. The x-axis uses the following abbreviations: R (fallacy of relevance),
L (fallacy of logic), CR (circular reasoning), C (fallacy of credibility), G (faulty
generalization), I (intentional), and FC (false causality).

of the time in the different boat scenario. Conversely, Mistral agents showed greater
robustness against logical fallacies. They both produced fewer fallacies than Llama
agents (Table 2) and their Discussants resisted more than Llama ones, with opinion
shifts occurring in 60% and 61% of the respective cases (Table 3).

Once investigated the production of fallacies at a macro-level, we proceeded to
examine which specific types of logical fallacies were most effective in inducing the
opinion shifts in the Discussants. Most changes, as highlighted in Table 4, are caused
by fallacies of relevance when agents discussed the different boat scenario, whereas in
the same boat discussion the opinion change is triggered by general logical fallacies
that do not fall under the other labels recognized by the classifier.

Although it is difficult to interpret the specific fallacies introduced by the classifi-
cation model under the label fallacy of logic, the preference for fallacies of relevance
may reflect the tendency of LLMs to overlook logical reasoning in favor of empty
rhetorical devices. This rhetoric is made up of compelling elements introduced into
the argument, which may be unrelated to the discourse’s premises, while creating a

misleading yet persuasive discourse.
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Table 4: Percentage of opinion changes in Discussants due to logical fal-

lacies.

Fallacy Type Llama (S) Llama (D) Mistral (S) Mistral (D)
Fallacy of Logic 24.35% 10.65% 27.07% 16.82%
Faulty Generalization 8.85% 1.14% 3.01% 0.00%
Ad Populum 0.00% 0.00% 0.38% 0.00%
Appeal to Emotion 2.21% 0.00% 0.00% 0.00%
Fallacy of Credibility 19.11% 9.89% 23.31% 31.80%
Fallacy of Extension 0.00% 0.00% 0.00% 0.00%
Fallacy of Relevance 22.33% 51.14% 25.56% 40.67%

Values indicate the percentage of opinion shifts in the Discussant agents
exposed to each fallacy type by the Opponent’s statement. Results refer to
Llama and Mistral agents discussing the same boat (S) and different boat
(D) initial statement.

3 Methods

In the Language-Driven Opinion Dynamics Model for Agent-Based Simulations
(LODAS) model, we have a population of N agents, where each agent a is an LLM
agent, i.e. an instance of a Large Language Model. Agents are enhanced using AutoGen
[48]: “a framework for creating multi-agent AT applications that can act autonomously
or work alongside humans”. Specifically, we exploited AutoGen AgentChat’s Assis-
tantAgent, a built-in agent that uses a Large Language Model and has the ability to
use tools. It serves as a foundational agent that can be customized or integrated into
multi-agent conversations.

In our model, each LLM agent holds a discrete opinion z,, € {0,...,6} associated
(from 0 to 6) with a negative (strongly disagree, disagree, mildly disagree), neutral,
or positive (mildly agree, agree, strongly agree) stance on a given statement s € S
around a given topic 6 € T. A statement s can have a positive valence, e.g., “this is
true,” or a negative valence, e.g., “this is not true.”

In our study, we chose the Ship of Theseus paradox as the topic, where the state-
ments were phrased as “the ship is the same” (positive valence) and “the ship is

different” (negative valence). To formalize this, we define a function 7(s) that maps
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statements to their valence as follows:

(5) +1, if s expresses a positive valence (e.g., “the ship is the same”)
w(s) =

—1, if s expresses a negative valence (e.g., “the ship is different”)

At each discrete time step ¢, a pair of agents (a;,a;) is randomly selected from
this network. One agent from the pair is assigned the role of Discussant (D) while
the other takes on the role of Opponent (O).

Prompts

Discussants D act according to the following prompt.

Discussant Prompt

[INST]
### You {Discussant_opinion} on the reasoning conclusion
provided as input.
Task:
- Listen to the argument of {Opponent.name} on the reasoning
conclusions and decide if you maintain your opinion

or change it.

### Constraints:
- At the end of each interaction declare if you
- 'ACCEPT' {Opponent.name} argument;
- 'REJECT' {Opponent.name} argument;
- 'IGNORE' your original opinion.
Write your response with the following format:
\"My original opinion was I {Discussant_opinion}
on the reasoning.

After reading your argument my conclusions are:

21



402

403

404

405

406

407

408

409

410

411

I <ACCEPT|REJECT|IGNORE> your stance because <argument>\"

[/INST]"

The role of the Opponent is instead modeled by the following prompt:

Opponent Prompt

[INST]
You {Opponent_opinion} on the reasoning conclusion provided as input.
Support your opinion by providing personal arguments.

Avoid using already generated arguments.

IF {Discussant.name} writes REJECT in his answer, write a second statement
where you declare if you <ACCEPT|REJECT|IGNORE> his stance.
Otherwise, conclude the conversation writing a message with

a single word 'END'.

### Constraints:
- In your first statement you must adhere to your opinion
('{Opponent_opinion}"')
- Write your first response with as: \"I {Opponent_opinion} on the
provided reasoning conclusions. I think that <argument>\}

[/INsT]",

The selected Discussant ap engages in a discussion with the Opponent ap on a
predefined topic 6 € T, with the goal of influencing the other’s opinion. During this
interaction, the Discussant ap and the Opponent ap are prompted to maintain their
initial opinions unless convinced by the argumentation of the other.

The discussion is started by ap, who asks agent ap to express their opinion on
statement s around topic 8 with valence 7(s).

In our study, we have two different statements:
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Positive valence statement 7(s)

Theseus set sail to reclaim the throne as king of Athens. During the journey,
parts of Theseus’s ship began to break or decay; Theseus and his crew replaced
these parts as they sailed. Eventually, each part of the ship is replaced. In the

end the Ship of Theseus is still the same ship on which he originally sailed.

and

Negative valence statement m(s) = -1

Theseus set sail to reclaim the throne as king of Athens. During the journey,
parts of Theseus’s ship began to break or decay; Theseus and his crew replaced
these parts as they sailed. Eventually, each part of the ship is replaced. In
the end, the Ship of Theseus is completely different from the one he originally

sailed.

The question has the following structure:

Discussion initialization

What do you think of the following statement?: {s}

The Opponent is asked to produce a persuasive utterance in response to the Dis-
cussant, based on their current opinion, to persuade the Discussant and shift their
stance. The Discussant then processes the Opponent’s response and generates a com-
ment about that statement, expressing whether it was convinced by the Opponent
or not. The interaction may result in a positive (+1) or negative (-1) change in the
Discussant’s opinion, or no change (0). Finally, the Opponent closes the discussion in
one of two ways: if the Discussant chooses not to accept the persuasive statement,
then it generates a new statement commenting on the current stance of the Discus-

sant and thanking it for the discussion. This comment does not affect the opinions’
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status, it simply ends the iteration round. Otherwise, if the Discussant is persuaded
by the Opponent, the Opponent can simply end the iteration with an END keyword.
In the present study, we set the number of iterations to T' = 30. At each iteration

t there are N pairwise random interactions (ap,ao).

Metrics and Analysis
Statistical Validation

To evaluate whether our results differ significantly from patterns that could arise
by chance, we constructed a Random Null Model under the same experimental
constraints as the LODAS setting. Specifically, we defined a population of N = 140
agents, interacting under the same structural rules. Each simulation was run for T' =
30 iterations, with each iteration consisting of N pairwise interactions between a
discussant agent D and an opponent agent O. In each interaction, only agent D could
update their opinion, with a possible change of +1, —1, or 0.

We performed R = 10 independent runs for the null model to generate a reference
distribution of opinion transitions. To compare these outcomes with those from the
experimental condition, we analyzed the respective transition matrices. Fach matrix
T € REXK represents the empirical average transition probabilities between K dis-
crete opinion states. The element T;; denotes the probability of transitioning from

opinion state ¢ to state j:

Tij = P(iL’D(t+ 1) :j | LL'D(t) = Z)

where xp(t) € O is the opinion of the discussant agent at time step ¢, and O is

the set of all possible opinions. Each row of the matrix is normalised such that:
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> Tyy=1 forallic{l,... K}
j=1

To assess statistical differences between the experimental and null models, we used
Welch’s ¢-test for independent samples. For each matrix entry (i, j), we tested the null

hypothesis:

null

HO : ,Ltfj( = Hij

against the two-sided alternative:

NUP #Mnull

null renresent the expected transition probabilities in the exper-

where ,u P and i
imental and null conditions, respectively. We used the scipy.stats implementation
of Welch’s t-test, which does not assume equal variances. Statistical significance was

determined using a threshold of p < 0.05, under which the null hypothesis was rejected

in favor of a significant difference.

Opinion Evolution Metrics

Opinion dynamics were further analyzed by examining the temporal evolution of the
average opinion distribution. Let z;(t) € O denote the opinion of agent 4 at time step
t, where O is the set of possible discrete opinion states. For each opinion x € O and
each time step t € {1,...,T}, we computed the proportion of agents holding opinion

x, defined as:
N
1
“y 2t
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where I[] is the indicator function. The resulting trajectories P, (t) were averaged
across R = 10 independent simulation runs, and we report either 95% confidence
intervals or standard deviation bands to indicate variability.

To assess sycophantic tendencies, we computed acceptance probability matrices
A € [0,1]5%K where each entry A;; denotes the empirical probability that an agent
with opinion zp = i accepts the opinion xo = j of their opponent. This can be

expressed as:

NA(i7j)

where:

e Na(i,j) is the number of interactions in which an agent with opinion i accepted
the opponent’s opinion j,
* Nint(4,7) is the total number of interactions between agents with opinions 4

(discussant) and j (opponent).

Analogously, to examine backfire-like effects, we constructed rejection probabil-
ity matrices R € [0,1]5*K where R;; indicates the probability of rejecting the
opponent’s opinion j when the discussant holds opinion i. Rows correspond to the
discussant’s opinion and columns to the opponent’s.

Additionally, we analyzed the influence of opinion distance on interaction out-
comes by defining the signed opinion distance as Ax = xo — xp. For each possible
value of Az, we computed the acceptance and rejection probabilities P(A | Az) and
P(R | Az), respectively. These conditional probabilities were estimated empirically
and averaged over the R = 10 simulation runs, with uncertainty represented using

standard deviations.
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Logical Fallacies detection

The presence of logical fallacies in text is usually identified through transformers-
based models, so the task is often approached as a multi-label classification problem.
In this work, we employ the distilbert-base-fallacy-classification model [49]
obtained from HuggingFace. We chose this specific model as it is trained on the dataset
used by Jin et al. [50], which introduces the task of logical fallacies detection and
the LOGIC dataset for fallacies. In the present article, we refer to the 13 fallacies
illustrated in the original article by Jin et al. [50].

In the following, we present and discuss only the most common fallacies identified

in our analysis; readers are referred to the original paper for a full summary.

e Fallacy of credibility: it consists of an appeal to a form of ethics or authority;

e Fallacy of relevance: the argument relies on premises that are irrelevant to the
conclusion. In [51], it is suggested that premises might be psychologically relevant
but not logically relevant, resulting in an argument that seem apparently correct
and persuasive;

e Appeal to emotion: this fallacious argument assumes that premises are not rel-
evant to conclusions, but the premises are used as a means to convey a specific
emotion aiming to manipulate the beliefs of the reader;

* Circular reasoning (circulus in probando): a fallacy characterized by a circularity

in reasoning so that the premises depend on the conclusions and vice versa.

4 Discussion

This study builds on recent literature [20, 33, 34] and introduces a Language-Driven
Opinion Dynamics Model for Agent-Based Simulations (LODAS) to investigate how
language and social influence shape opinion evolution, with a particular focus on the

role of logical fallacies. In the model, each agent holds a discrete opinion ranging from
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Strongly Disagree to Strongly Agree. At each time step, a Discussant asks an Oppo-
nent for their opinion on a topic; the Opponent responds with the intent to persuade
the Discussant, who may then adjust their opinion by +1 or keep it unchanged. This
process repeats until opinions stabilize or a stopping condition is reached. We stud-
ied three initial opinion distributions: (a) Balanced (uniformly distributed opinions),
(b) Polarized (only extreme opinions), and (¢) Unbalanced (majority extremely neg-
ative). The discussion topic was the paradox of the ship Theseus, chosen to prevent
convergence toward a ground truth or consensus. Each initial condition was paired
with either a positive framing (“The boat is the same”) or a negative framing (“The
boat is different”), producing six scenarios simulated with two different LLM.

Our findings address three main research questions: RQ1: Can LODAS generate
emergent behaviours without mechanistic rules? RQ2: How do different LLM impact
persuasion, particularly regarding logical fallacies? RQ3: To what extent do initial

opinion distributions influence final outcomes?

Regarding RQ1, our analyses demonstrate that the LODAS framework can pro-
duce emergent behaviours without embedding explicit behavioural rules common
in traditional mechanistic models [52]. Specifically, agents exhibit (i) strong con-
vergence toward a dominant opinion, often forming a majority though not always
full consensus; (ii) a consistent tendency towards agreement; and (iii) asymmetric
acceptance-rejection bias — the probability of an agent accepting or rejecting an oppo-
nent’s opinion is strongly and oppositely correlated with the signed opinion distance:
higher opinions are more often accepted and rarely rejected, while lower opinions
are more often rejected and rarely accepted, producing an asymmetric pattern in
opinion updating. These emergent patterns underline the ability of language-driven
interactions to naturally shape opinion evolution in ways that mirror empirical social

phenomena, confirming the promise of LODAS as a modelling approach.
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In exploring RQ2, we found meaningful differences between the two LLM agent
types. Mistral agents yielded more stable results, with faster and stronger conver-
gence toward agreement and a pronounced asymmetric acceptance-rejection bias.
Conversely, Llama agents displayed greater openness to a range of opinions, though
typically favoring those similar to their own. Notably, the framing of the discussion
statement influenced Llama agents’ dominant opinions: negative framing shifted their
majority from agreement to mild disagreement. Linguistic analysis revealed that LLM
agents frequently employed logical fallacies—particularly those related to relevance
and credibility—in attempts to persuade others. These agents were also influenced by
such fallacious arguments, consistent with prior work showing susceptibility of lan-
guage models to faulty reasoning [39, 53, 54]. Interestingly, Llama agents were more
effective persuaders, with about 68% of Discussants changing opinions after expo-
sure to fallacious arguments, compared to 54% for Mistral. This highlights both the
persuasive power of logical fallacies in artificial agents and the varying susceptibility
depending on model architecture.

Finally, RQ3 addresses the role of initial opinion distributions. Our results indi-
cate that initial conditions have limited influence on final outcomes: whether balanced,
polarized, or unbalanced, opinions converged toward specific stable points dictated by
the model and statement framing. This suggests that each model-statement pair gener-
ates a strong internal dynamic that overrides initial biases, driving convergence toward
a characteristic opinion cluster. This robustness underscores the influence of language
model design on interaction dynamics, reflecting tendencies toward coherence and
alignment that encourage agreement [55, 56]. The asymmetric acceptance-rejection
bias, which reduces acceptance of negative opinions and amplifies influence from

positive ones, appears to be a key driver of this stability.
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Taken together, these insights advance our understanding of how language-based
social simulations can capture complex opinion dynamics and the role of logi-
cal fallacies therein. The observed convergence, agreement bias, and asymmetric
acceptance-rejection bias reveal intrinsic tendencies within LLM agents to favor coher-
ence and social alignment, potentially mirroring real-world psychological phenomena
but also raising concerns about sycophantic behaviours [55]. However, the agreement
we observe is not simply a result of sycophancy but emerges from asymmetric process-
ing of differing opinions, with broader acceptance of more positive views. Moreover,
the presence and persuasive impact of logical fallacies emphasize the need to critically
evaluate the reasoning capabilities of such agents in social simulations, given their
susceptibility to flawed arguments [39, 54]. Our study thus provides a foundation for
further work exploring how language-driven models can inform both the dynamics of
opinion formation and the risks associated with fallacious reasoning in Al-mediated

social influence.

5 Conclusion

This study introduces a Language-Driven Opinion Dynamics Model for Agent-Based
Simulations (LODAS), allowing for the exploration of how language and social influ-
ence shape opinion dynamics. By utilizing LLM agents, this study shows that synthetic
agents, when left unprompted, tend to converge toward agreement, irrespective of ini-
tial opinion distributions or prompt framing. This convergence is primarily shaped
by the underlying language model, with agents exhibiting a consistent asymmetric
acceptance-rejection bias: they are more likely to adjust their opinions toward more
positive stances and reject more negative ones. This bias is more pronounced in Mis-
tral, which favors agreement more strongly, whereas Llama agents exhibit a form of

bounded confidence, showing greater susceptibility to nearby opinions. In both cases,
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agents frequently employ logical fallacies in their persuasive attempts and are, in turn,
influenced by such flawed arguments.

One key limitation of the current framework is the simplicity of the agents. In
this model, agents are equipped with verbal reasoning skills but lack distinct person-
alities or cognitive diversity. The introduction of more complex agent types - such
as those with different decision-making styles, biases or psychological traits - could
better replicate the diversity of human interactions [57, 58].

Future extensions of the framework could also benefit from a deeper integration of
cognitive biases [43] and demographic factors [59], as these elements are known to influ-
ence opinion dynamics in the real world. Furthermore, the model currently assumes a
mean-field scenario, which neglects the structure of real-world social networks. Incor-
porating network features such as clustering, assortativity, or echo chambers could
significantly increase the realism of the simulations and improve their ability to repli-
cate polarization dynamics [32, 60, 61]. Preliminary tests with alternative network
topologies and more sophisticated opinion dynamics algorithms suggest the potential
to capture more complex patterns of interaction.

The exploration of fallacious reasoning in social simulations of LLM agents and
its role in opinion dynamics has been approached at a preliminary level in this study,
leaving substantial opportunities for future investigation. The role of fallacies poses
challenges not only in the context of social simulations - where agents could potentially
be optimised through better prompting, enhanced memory, or other refinements to
mitigate fallacious reasoning - but also in human-LLM interactions. If LLMs are easily
swayed by illogical arguments and tend to validate human perspectives, they may
inadvertently reinforce false or potentially harmful beliefs.

To improve the understanding of these dynamics, several directions for future
research can be pursued. One key focus is investigating methods to reduce falla-

cious reasoning in LLMs, such as through improved prompting, enhanced memory
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mechanisms, or adjustments to biases. Understanding the interplay between mem-
ory, bias, and opinion evolution is also critical for analyzing the role of persuasive
language in opinion change. Comparing LLM-based simulations with real-world data
from online interactions or controlled experiments can help evaluate (i) the robustness
of the framework, (ii) its ability to replicate human behaviour, and (iii) the effects of
linguistic features on opinion change under controlled conditions.

To summarize, despite its limitations, the framework provides a valuable tool for
studying the mechanisms of consensus-building and argumentation in a controlled
environment. The framework could serve as a foundation for exploring the drivers of
opinion dynamics and their implications for phenomena such as polarization, bias,

and misinformation.
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Figure Legends

Figure 1. Graphical schema of LODAS. The LLM agents population is initialized
as a network; each agent is an LLM instance with an initial opinion in the range [0,
6] (a). At each iteration, two agents are randomly chosen and prompted to act as
Opponent and Discussant (b). The Discussant is prompted to listen to the opinion of
the Opponent around the discussion statement and may then accept, reject, or ignore

such opinion (¢) and update their current one accordingly by +1 (d).

Figure 2. Balanced scenario — Mistral and Llama agents opinion trends.
Mistral (a)-(b) and Llama (c¢)-(d) opinion trends for the positive (a)-(c) and negative
(b)-(d) statements. Trends are represented for Strongly Disagree (dark red), Disagree
(red), Mildly Disagree (orange), Neutral (yellow), Mildly Agree (light blue), Agree
(blue), and Strongly Agree (dark blue) opinions. Lines indicate the average prevalence
of opinions at each time step, while the shade indicates the 95% confidence interval.

Averages are computed over 10 runs.

Figure 3. Balanced scenario — Mistral and Llama-agents transition matri-
ces. Mistral (a)-(b) and Llama (d)-(e) average (with std) transition rates from state
i to state j for the positive (a)-(d) and negative (b)-(e) statements. Annotated cells
are significant with respect to the Random Null Model (p < 0.05) according to the

t-test. Results are averaged over 10 runs.
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Figure 4. Balanced scenario — Mistral and Llama-agents average acceptance
probabilities P(A|op,00). Mistral (orange line and matrices (a)-(b)) and Llama
(blue lines and matrices (c)-(d)) average acceptance rates for the positive (solid lines
and (a)-(c) matrices) and negative (dashed lines and (b)-(d) matrices) statements.
Top panel: average probability of the Discussant accepting the Opponent’s opinion
as a function of Ax = xp — xp. Bottom panel: matrices represent acceptance rates

averaged over 10 runs.

Figure 5. Acceptance probability P(A | A,) as a function of opinion distance
A, = zo—zp. Each marker represents the average probability that a Discussant agent
accepts—i.e., moves toward—the Opponent’s opinion, as a function of the opinion
distance A, = zo—xp. Lines correspond to different initial opinion distributions: Bal-
anced (blue), Polarized (orange), and Unbalanced (green). Rows distinguish between
the two language models: Mistral (top) and Llama (bottom). Columns refer to the
direction of the statement: Same (left) and Different (right). Results are averaged

over 10 independent runs; shaded areas indicate standard deviations across runs.

Figure 6. Average logical fallacies proportions for different experiment con-
figurations across multiple runs. Figures (a)-(b) refer to Llama, while (c)-(d)
refer to Mistral. (a)-(c) refer to Llama (a) and Mistral (c) agents discussing the same
boat statement, (b)-(d) refer to the different boat statement. Error bars represent stan-
dard deviation across 9 runs. The x-axis uses the following abbreviations: R (fallacy
of relevance), L (fallacy of logic), CR (circular reasoning), C (fallacy of credibility),

G (faulty generalization), I (intentional), and FC (false causality).

Table Legends

Table 1. Overview of works in the literature introducing LLM agents.
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Table 2. Percentage of logical fallacies in Opponents’ statements. Percentage
of unique Opponent (O) statements classified as fallacious, across models (Llama,
Mistral), initial opinion distribution (balanced, polarized, unbalanced), and opinion

framing (same, different).

Table 3. Ratio of Discussants changing opinion for the effect of fallacious
statements.. Percentage of Discussants (D) changing opinion for the effect of fal-
lacious statements produced by Opponents, across models (Llama, Mistral), initial
opinion distribution (Balanced, Polarized, Unbalanced), and opinion framing (same,

different).

Table 4 Percentage of opinion changes in Discussands due to logical falla-
cies.. Values indicate the percentage of opinion shifts in the Discussant agents exposed
to each fallacy type by the Opponent’s statement. Results refer to Llama and Mistral

agents discussing the same boat (S) and different boat (D) initial statement.
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