Entity Alignment for Multimodal Temporal
Knowledge Graph

Abstract. Entity alignment (EA) aims to identify equivalent entities
across distinct knowledge graphs (KGs). While existing methods lever-
age either temporal, structural, or visual information independently, they
overlook the synergistic integration of multimodal data. This limitation
leads to the absence of dedicated multimodal temporal knowledge graph
(MTKG) benchmarks. Current MTKGs exhibit imperfections and are
continuously updated; thus, we aim to address these limitations through
alignment techniques. Moreover, most state-of-the-art approaches rely
on simplistic fusion strategies—such as direct concatenation, averaging,
or element-wise addition—to combine multimodal features, resulting in
the incomplete utilization of information, leading to the alignment ef-
fect falling short of expectations. To address these gaps, we introduce
ICEWS+, a novel multimodal temporal KG entity alignment dataset
extending the ICEWS benchmark, and propose DynEA: a contrastive
learning-based fusion framework enhanced by adaptive attention mech-
anisms. Empirical evaluations on ICEWS+ demonstrate that DynEA
achieves a Hits@1 score of 95.41%, significantly outperforming existing
methods.

Keywords: Knowledge Graphs - Entity Alignment - Multimodal Tem-
poral Knowledge Graph Dataset - Contrastive Learning.

1 Introduction

The rapid advancement of artificial intelligence has accelerated research progress
in domains such as information retrieval, intelligent question answering, and rec-
ommendation systems, accompanied by exponential growth in cross-domain re-
sources and data volumes. To enhance resource management and utilization effi-
ciency, KGs have emerged as a critical solution. Formally introduced in Google’s
2012 official blog post! and successfully deployed in its search platform, KGs
have since gained significant scholarly attention. By systematically defining and
interlinking real-world concepts, entities, and their relationships, KGs structure
web information using cognitive models aligned with human reasoning patterns.
This framework endows machines with semantic comprehension capabilities for
massive datasets, enabling deep information association, intelligent reasoning,
and knowledge discovery—thereby establishing a cognitive infrastructure for in-
telligent applications.

! https://blog.google/products/search /introducing-knowledge-graph-things-not /



Current knowledge graph research, while having achieved independent fu-
sion of multimodal data (e.g., images) and temporal information[2], still ex-
hibits significant gaps in multimodal temporal collaborative modeling. MTKG
can effectively characterize the dual properties of visual representations of en-
tity attributes and their temporal evolution, significantly enhancing knowledge
graphs’ modeling capabilities for dynamic complex scenarios in the real world.

However, most existing MTKGs originate from disparate sources or mono-
lingual contributions, constraining knowledge coverage. Consequently, matching
and synchronizing independently constructed KGs to provide complementary in-
formation for Natural Language Processing (NLP) tasks is imperative[2]. Knowl-
edge fusion addresses this challenge by integrating heterogeneous information
sources. Farly fusion research focused on conceptual-level mappings between
KGs, while contemporary efforts prioritize data-level EA due to increasing data
volumes|2].

The theoretical significance of EA manifests in two dimensions: Overcom-
ing single-KG coverage limitations through multi-source integration, expanding
downstream application scope[10]. (e.g., question answering systems) Reducing
large-scale domain-specific KG construction costs (e.g., healthcare) by fusing
precise smaller KGs, balancing scale and accuracy[23].

Most state-of-the-art EA approaches|[16,17] rely on simplistic fusion strate-
gies—such as direct concatenation, averaging, or element-wise addition—to com-
bine multimodal features. Critical analysis of existing EA research reveals three
fundamental limitations:

e Dataset deficiency, with no existing EA datasets simultaneously incorporat-
ing multimodal and temporal information;

e Feature synergy neglect, where current techniques prioritize character, at-
tribute, and relation features while underutilizing complementary informa-
tion within and across multimodal KG modalities [38];

e Fusion simplicity, where prevalent fusion methods (concatenation, summa-
tion, averaging) lack adaptive weight selection mechanisms.

To address these gaps, this paper constructs a novel MTKG entity alignment
dataset integrating multimodal attributes with temporal information, and devel-
ops DynEA—an innovative alignment framework leveraging contrastive learning,
attention mechanisms, and graph neural networks. The DynEA framework in-
tegrates three synergistic modules: a multimodal temporal data preprocessing
module that transforms heterogeneous data modalities—including entity names,
relations, temporal attributes, and unstructured visual content—into unified
embedding representations; a contrastive learning-based fusion weight training
module that dynamically optimizes cross-modal integration weights through at-
tention mechanisms and contrastive learning; and a graph neural network-based
encoder-decoder module where specialized temporal and relational encoders pro-
cess embeddings, reformulating entity alignment as a weighted graph matching
problem to fuse spatiotemporal features, ultimately generating the alignment
probability matrix through sigmoid-activated decoding. Our principal contribu-
tions include:
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e Pioneering Dataset: Constructs the multimodal-temporal KG entity align-
ment benchmark with generalized construction methodology applicable across
domains;

e Synergistic Feature Integration: Augments traditional EA methods by jointly
incorporating visual features and timestamp-based temporal information to
significantly enhance alignment accuracy;

e Advanced Fusion Algorithm: Proposes DynEA (Dynamic Embedding Align-
ment) featuring dynamic modality fusion with temporal modeling, validated
through rigorous experiments for superior performance.

2 Related Work

Conventional EA methods. Existing EA methods can be divided into three
types. Translation-based methods, like MTransE [6], BootEA [28], and AlignE
[27], founded on TransE’s framework [1], excel in knowledge representations.
Graph Neural Networks(GNNs), exemplified by GCN [14], mark a notable ad-
vance in EA by aggregating neighborhood information to generate entity embed-
dings. GCN-Align [34], RDGCN [8], and Dual-AMN [21] exemplify GNN-based
EA methods, utilizing GCN for modeling structure information and learning en-
tity embeddings. Recent GNN-based methodologies, e.g., TEA-GNN [36], TREA
[35], and STEA [3], have integrated temporal data, underscoring its significance
in EA. Other approaches, such as Fualign [32], Simple-HHEA [12|, and BERT-
INT [31] address the heterogeneity in KGs by utilizing side information.
Temporal knowledge graph EA methods. Xu et al.[36] first studied tem-
poral knowledge graph EA, treating timestamps as link attributes instead of
discretizing temporal graphs into snapshots. They used time-aware attention to
fuse information and optimize training. Tem-EA combines LSTM with GCN
structural embeddings for alignment[25], while Sun et al. enhance graph atten-
tion with temporal modeling to learn entity embeddings[26]. Cai et al.[3] argue
time labels need no separate representation, using a simple GNN with tempo-
ral matching for unsupervised alignment. Liu et al. generate initial labels via
shared time information, fusing temporal and relational data with label-free en-
coders[17]. Another study mines entity evolution through time contexts but uses
attribute-based temporal info[18].

Multimodal knowledge graph EA methods. Since Liu et al.[19] introduced
visual modality into multimodal knowledge graph (MMKG) EA, this research
direction has gained increasing attention alongside advances in multimodal learn-
ing. Chen et al.[4] fuse modality representations to minimize entity embedding
distances; Liu et al.[16] apply attention mechanisms for modality weighting;
Chen et al.[5] integrate visual features to guide relation learning and select key
attributes; while Lin et al.[5] enhance intra-modal learning through contrastive
learning and KL divergence. However, existing methods critically overlook dy-
namic inter-modal effects between entities and practical challenges, including
KG noise, intra-modal feature discrepancies (e.g., node degree variations), and
inter-modal preferences (e.g., modality absence or imbalance).



Our method fully integrates image information, temporal information, en-
tity information, and structural information. It also utilizes technologies such as
graph neural networks in deep learning to assist in alignment. Through intra-
modal and inter-modal contrastive learning as well as attention mechanisms, it
overcomes the defects of existing EA techniques and establishes a significant
benchmark method for future MTKGs.

3 Construction Methodology for Multimodal Temporal
Knowledge Graph Entity Alignment Datasets

Traditional knowledge graphs fail to capture dynamics and integrate multi-
dimensional information. Advances in network technology enable access to multi-
modal data and temporal recording via timestamps, motivating the development
of multimodal temporal knowledge graph FA. This technique integrates tempo-
ral dynamics and multimodal complementarity to overcome static constraints
and unimodal information gaps, enriching semantic representations for EA and
knowledge completion.

To address the lack of public datasets, we construct ICEWS-+. This bench-
mark supports algorithm validation and advances applications such as dynamic
knowledge reasoning and question answering systems, meeting high-quality knowl-
edge service demands in domains like healthcare and military operations.

3.1 Dataset Construction Process

After acquiring raw structured event data from the official ICEWS database[11],
initiate the cleaning process. Through a machine cleaning layer, resolve the root
directories of entity names and iteratively query entity names to generate a
cleaned entity name list.

Based on the cleaned entity list, deploy a Playwright automation cluster for
visual data expansion. Use entity names as keywords to crawl openly licensed
images from Google Images/Bing Images, dynamically filtering out low-quality
images (e.g., resolution below 640 x 480 or heavy text overlay). For example,
collect conference site photos and map visualizations for the entity "UN Climate
Change Conference," prioritizing higher-relevance images. Concurrently, build an
image metadata database recording source URLs and crawl timestamps, saving
all images to a unified folder.

Perform feature encoding on multimodal data: Resize images to 256 x 256
resolution, apply center-cropping to 224 x 224, and use histogram equalization to
mitigate illumination bias. Load ResNet-152 with ImageNet pre-trained weights,
remove the original fully connected layer, and replace it with an identity function
to directly output a 2048-dimensional feature vector after global average pooling.
(e.g., encode conflict scene images into feature patterns highlighting military
equipment and structural damage).

Process image feature tensors obtained via ResNet-152. Aggregate historical
event texts, relations, and timestamps by entity ID. Use Python for file process-
ing to consolidate all data into the ICEWS+ folder for subsequent research.
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Through these steps(see Fig. 1), a comprehensive multimodal temporal knowl-
edge graph EA dataset (ICEWS+) will be constructed, exhibiting enhanced di-
versity and authenticity.
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Fig. 1. Dataset Construction Process
3.2 Details

ICEWS+ is a multimodal temporal knowledge graph EA dataset proposed by
us. It is the first such dataset both domestically and internationally, featuring
strong authenticity, high information integration, and rich modal diversity. The
dataset was developed to address the data requirements for knowledge graph
EA in real-world scenarios, providing richer and more authentic data support to
advance related research.

The roles of the components are detailed below: Entity IDs (ent ids):
Core entities for alignment, derived from ICEWS data (e.g., political figures,
events, countries). Numerical IDs connect to other components. Reference En-
tity Pairs (ref pairs): Represents 7,566 aligned entities for use as a validation
set in algorithms. Relation IDs (rel ids): Defines relationships (e.g., “chaired
a meeting” or “reached an agreement”) to form entity network graphs. Super-
vised Entity Pairs (sup _pairs): Represents 1,000 entity correspondences for
supervised learning training pairs. Time IDs (time id): Unique timestamps
record event times to assist alignment tasks. Tuples (triples): Quadruples that
log specific events and their timing (head entity, relation, tail entity, time). Un-
supervised Links (unsup _link): Forms the training set (8,168 pairs) in unsu-
pervised mode, with the validation set combining training and validation data.
Image Information (icews images): Images (e.g., of events or figures) in
ResNet-processed pickle format, linked to entities via IDs for multimodal inte-
gration.

4 The Proposed DynEA

This section proposes the DynEA framework, designed to effectively utilize
cross-modal contrastive learning and attention mechanisms for modality fusion,
addressing the task of multimodal temporal knowledge graph EA.



4.1 Definition

The multimodal temporal knowledge graph EA task processes two distinct knowl-
edge graphs G; = (Es, Rs, T, Qs, Is) and Gt = (E¢, Ry, T, Q4, It), where Eg and
FE; represent entity sets, Ry and R; denote relation sets, T is the shared time
interval set, Qs C Fs X Ry X Es x T and Q; C E; X Ry x Ey x T are temporal
quadruple sets, and I, I; correspond to image sets.
The alignment objective is to discover the set of semantically equivalent entity
pairs:
¢ ={(es,e1) € Es x By | es = e}, (1)

where = denotes semantic equivalence between entities. This mapping ¢ consti-
tutes the solution to the EA problem.
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Fig. 2. Overall framework of proposed model

4.2 Multimodal Temporal Data Preprocessing Summary

Knowledge graph construction faces dual challenges: knowledge representation
and knowledge acquisition. To address this, we shift to mining unstructured text
via NLP for automated entity or relation extraction.

The preprocessing module unifies structured or unstructured data using core
techniques—matrix processing, feature processing, data partitioning, and simi-
larity computation—to transform inputs into tensor formats for neural network
learning. It employs sparse storage where adjacency matrices per modality are
stored in LIL (List of Lists) format using nested lists: an outer list represents
rows, while inner lists store non-zero values (data) and column indices (rows).
This structure enables efficient dynamic element addition, rapid row retrieval,
and flexible initialization from dense matrices or other sparse formats. This en-
ables efficient handling of multimodal temporal KG datasets [30].

Subsequently, symmetric normalization (analogous to GCN operations) is
applied to the adjacency matrix:

A=D"

Nl
N

AD™z, (2)
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where D = D+ 1 and A = A+ I. This ensures numerical stability in subsequent
graph convolutions, preserves information integrity in the adjacency matrix, bal-
ances degree heterogeneity, prevents feature distribution shift, maintains graph
symmetry, and enhances compatibility with neural networks.

4.3 Feature Fusion

The contrastive learning-based multimodal fusion weight training module ex-
tracts structural, relational, attribute, and visual modal features through graph
attention networks (GAT) and pre-trained models respectively. It employs intra-
modal contrastive loss (ICL) to enhance single-modal discriminability while de-
signing inter-modal alignment loss (IAL) to constrain cross-modal distribution
consistency via bidirectional KL divergence. The module dynamically learns
modal weights through multi-head self-attention mechanisms and automatically
balances multi-objective loss weights using task-dependent uncertainty. Finally,
EA is driven by contrastive similarity in a joint embedding space, achieving se-
mantic coordination and adaptive fusion of heterogeneous modal features, which
significantly improves EA accuracy in multimodal knowledge graphs.

Intra-modal contrastive loss (ICL) is the core component for modeling entity
distinguishability within single modalities in the fusion weight training mod-
ule.For each modality m, the similarity between entities v and v is defined as
the normalized dot product:

fm(u)Tfm(v)

T1

); (3)

Om (u, v) = exp(

where f,,(-) is the encoder for modality m (e.g., GAT for structural modality,
ResNet for visual modality), 71 is the temperature parameter controlling dis-
tribution smoothness, and input embeddings are L2-normalized. For a positive
sample pair (ei,e}), its alignment probability distribution under modality m is:

Om (ei, eé)

Om (eﬁ, eé) + Ze{eN{' Om (e?l, e{) + Ze%ENé Om, (eli’ ej)

(4)

dm (eilv 622) =

This distribution represents the probability of aligning e! and e} in modal-
ity m, with the denominator summing similarities across all positive and nega-
tive samples. Since alignment is bidirectional (ef <+ €%), the reverse probability
gm(es, e}) is simultaneously computed and averaged to enhance symmetry:

1 o o
LIV — _E;cplog [2 (gm (€1, €%) + am (eé,e‘l))} . (5)

The expectation operation averages over batch data. This cross-entropy-
based loss forces alignment probabilities of positive pairs toward 1, effectively
enhancing each modality’s ability to distinguish aligned entities through bidirec-
tional probability constraints and independent multimodal optimization.



Inter-modal Alignment Loss (IAL) is the core component for modeling cross-
modal semantic consistency. The joint embedding is generated by weighted con-
catenation of unimodal embeddings (structure, name, image, etc.), forming a
comprehensive representation that fuses multimodal information. This section
treats the prediction distribution of joint embeddings in alignment tasks as the
"teacher signal" and unimodal embedding distributions as "student signals". By
minimizing their distributional divergence (KL divergence), unimodal embed-
dings learn cross-modal interactive knowledge, bridging semantic gaps between
modalities.

For joint embeddings (modality o, representing fused multimodal informa-
tion) and unimodal embedding m, the alignment probabilities are defined as:

v = exp(fo(u)Tfo(U)/TQ)
G () = (o) FolR)/72) ©)
q/ (U I/) _ eXp(fm(U)Tfm(l/)/Tg) (7)

B ZkeN exp(frn(u) T frm(v)/T2)’

where f,(-) and f,,(-) are encoders for joint and unimodal embeddings respec-
tively, 7o is the temperature parameter, and N includes positive/negative sam-
ples. IAL measures distribution divergence via bidirectional KL divergence:

L% = Bieny [KL (g (ch,€5) g (ch,€5)) + KL (g5 (b, €d) g (e561))] - ®)

Forward KL aligns unimodal embeddings with comprehensive semantics guided
by joint embeddings, while reverse KL preserves modal specificity (e.g., visual
features in images, text semantics in names). As the core mechanism for cross-
modal semantic fusion, IAL injects multimodal interactive knowledge into uni-
modal embeddings through distribution alignment, eliminating heterogeneity
gaps while preserving modal specificity. This design ingeniously incorporates
knowledge distillation principles, avoiding noise issues in direct feature fusion
and providing an effective cross-modal collaborative solution for multimodal EA.

The attention-based adaptive fusion method concatenates embeddings from
four modalities (structure, relation, time, vision) into an input tensor processed
by stacked BertLayers. Each BertLayer employs Transformer-based self-attention
heads to compute cross-modal attention scores capturing inter-modal depen-
dencies, combined with feed-forward networks for nonlinear enhancement. The
tensor propagates through layers, outputting updated features and attention
matrices. The final layer’s attention matrix is aggregated across heads and row-
averaged to produce modality importance weights, which are normalized via
Softmax. These weights multiply the original modal embeddings for weighted
feature fusion, with the resulting weighted features concatenated into joint em-
beddings for downstream EA tasks.
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4.4 Graph Neural Network-based Encoder-Decoder

The design focuses on cross-domain heterogeneous data fusion and alignment
through graph neural networks. In the encoding phase, entities from source and
target knowledge graphs (KGs) with mismatched attribute types/quantities are
projected into a unified semantic space via shared embedding layers. Temporal
and relational encoding handle missing attributes through neighborhood aggre-
gation or adaptive filling strategies. Distribution differences in entity attributes
and local topological patterns (e.g., neighbor aggregation paths) are encoded
to construct cross-domain alignable structural feature vectors. Temporal and
relational features are fused via weighted graph matching to enhance key at-
tributes. Temporal Encoder extracts time-sensitive entity features from quadru-

ples @ = {(h,r,t,7)}:
t eXp(|Qe‘r|)

T Er/eT exp (|Qer]) ’

where |Qe-| counts quadruples involving entity e in time interval 7. The tem-
poral feature matrix A* € RIFIXITI is split into subject/object matrices and
concatenated into A* € RIZI*2ITI Multi-hop graph convolution addresses miss-
ing features:

9)

a

HY = [A' || A- A || A2 AL || || AL A, (10)

yielding H' € RIEX2ITI(L+1) with multi-hop temporal propagation.
Relation Encoder constructs structural associations with temporal fusion:

Z h,«]+ Z hey | (11)

7"6/\/”" TEN"

he, = |h2" ||
i €; V\/’T

initialized as hS,O) ~ Glorot(D), where 7, and 7,, denote relations/time between
entities u, v. Output: H” € RIFUE[xD
Decoder frames alignment as weighted graph matching:

T
P = a- HL (HY) + H! (HD)". (12)
Sinkhorn normalization enforces 1-to-1 constraints:

plntn) _ Normalize,gys (P(n) ® @APmn) ; (13)

PO Y — Normalizeoorumns (P(")) . (14)
Graph matching objective combines structural /temporal similarity:
Da.g, = k"A,P — PA%, + K'AL — PAL,. (15)
Weights derived from Weisfeiler-Lehman kernel:

k= kwr (As, Ay), (16)
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K = b (41,45, (1)

KD, (GG = 30 (o (6 o (). o9

Let h denote the number of iterations for the Weisfeiler-Lehman (WL) graph
kernel, and ¢(G;) represent the feature mapping obtained from the WL isomor-
phism test. To mitigate the influence of graph size, normalization is typically
performed as follows:

kww (G1,Ga) = Fw (G1, Go) : (19)
’ Vkwe (G1,G1) - kwi (G2, G2)

Finally, we perform a grid search over the range R, to find the optimal «
that minimizes the graph matching objective function Dg, ¢, , thereby obtaining
the final alignment matrix.

5 Experiments

We evaluate our method on ICEWS-+ as follows.

5.1 Experimental Setup

Evaluation Metrics. The widely-adopted Hits@N (H@N ) (N=1, 10) and Mean
Reciprocal Rank (MRR) are used as the evaluation metrics.HitsQN (expressed
as a percentage) measures the ratio of correctly aligned entities appearing within
the top-N ranked positions in the alignment matrix P. MRR (Mean Reciprocal
Rank) computes the average of the reciprocal ranks of the first correctly aligned
entities in P, where the reciprocal rank for an entity is the inverse of its highest
correct alignment position. Higher values for both Hits@/N and MRR correspond
to superior EA accuracy.

Baselines. We utilize seven state-of-the-art EA methods as baselines, ensur-
ing fairness by excluding external edge information and conducting experiments
solely on our multimodal temporal knowledge graph dataset. Brief descriptions
of each method are:

e MTransE [6]: Translation-based multilingual KG embedding with cross-
lingual transformations for entity/relation alignment.

e JAPE [29]: Joint attribute-preserving embedding combining structural and
attribute information in a unified space.

e AlignE [28]: Alignment-oriented KG embedding using shared space and
uniform sampling for cross-lingual alignment.

e GCN-Align [34]: GCN-based method integrating structural and attribute
data for unified space embedding.

e RREA [22]: GNN-based approach with relation-specific embeddings via re-
flection transformations for discriminative alignment.
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e TREA [35]: Temporal-aware entity alignment leveraging GNNs and atten-
tion mechanisms for time-sensitive KGs.

e TEA [17]: Temporal KG entity alignment fusing temporal and relational
signals to enhance accuracy.

5.2 Comparison

Table 1 summarizes the EA performance on ICEWS+-.

Table 1. Main experiment results.

model  Hits@l Hits@10 MRR

MTransE  10.1 24.1 15.0
JAPE 14.4 29.8 19.8
AlignE 50.8 75.1 59.3

GCN-Align 204 46.6 29.1
RREA 72.2 88.3 78.0
TREA 91.4 96.6 93.3

TEA 94.71 97.26 95.76
DynEA 95.41 97.19 96.12

For comparative clarity, in Table 1, the highest evaluation metric scores are
highlighted in bold, while the second-highest scores are marked with underlining.
Analysis of Table 1 reveals that DynEA not only demonstrates strong perfor-
mance compared to baseline methods but also exhibits robust capabilities. As
one of the state-of-the-art temporal knowledge graph EA methods, TEA serves
as a key benchmark. When comparing DynEA and TEA on the identical multi-
modal temporal knowledge graph dataset under equivalent virtual environments
and configurations, DynEA shows clear superiority. Specifically, DynEA achieves
a 0.9% higher average Hits@1 score and a 0.36% higher MRR, than TEA. This
performance advantage primarily stems from two innovations in DynEA: 1) Inte-
gration of multimodal visual information 2) Intelligent weight selection through
contrastive learning losses and attention mechanisms during multimodal tempo-
ral fusion. In contrast, TEA lacks visual modality processing and employs static
(non-adaptive) fusion weights under comparable conditions.

5.3 Ablation Study

We remove each component of DynEA, and report HQ1, HQ10, and MRR in Ta-
ble 2, which shows metric values when DynEA is deprived of entity information,
temporal information, relational information, or visual information. An addi-

tional ablation test investigates the removal of the contrastive learning-based
weight fusion module (CLM). The final row displays the full DynEA model’s
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metrics, with bold indicating the highest scores and underlined scores marking
the second-highest values.

The full DynEA configuration achieves significantly higher Hits@Q1 than all
ablated variants, while maintaining leading performance in Hits@10 and MRR.
This demonstrates that removing any modality degrades model performance,
confirming the importance of each information type. The CLM module proves
crucial for optimal operation.

Collectively, these findings validate the necessity of multimodal information
fusion and fusion strategy selection.

Table 2. Ablation experiment.

state Hits@1 Hits@10 MRR

Without Entity 93.96 96.22 94.89
Without Time 93.88 96.63 94.97
Without Relation 94.66 96.97 95.61
Without Image 95.00 97.18 95.88
Without CLM  94.44 91.10 95.35
Full Model 95.41 97.19 96.12

5.4 Sensitivity Study

We systematically adjusted the learning rate across values {0.1,0.01,0.001, 0.0001},
with the resulting Hits@1 performance metrics visualized in Figure 3.

Hits@1 (%)
£
>
\

0.1000 0.0100 0.0010 0.0001
Learning Rate

Fig. 3. Impact of learning rate

We observe that as the learning rate decreases, Hits@1 gradually improves.
This confirms that higher learning rates tend to cause oscillations that miss opti-
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mal solutions, while lower rates may converge to local optima. The dropout rate
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Fig. 4. Impact of dropout rate

was varied within the set {0.1,0.2,0.3,0.4,0.5,0.6}, with corresponding Hits@1
results shown in Figure 4.

We observe that variations in dropout rate have minimal impact on Hits@1,
vet at parop = 0.2, Hits@1 is significantly higher. This phenomenon stems from
the depth-dependent nature of optimal dropout configuration|33]:

e Deep networks: Typically require pgrop ~ 0.5 to maximize regularization
effects.

e Shallow architectures: Should maintain pgy., < 0.2 to prevent excessive
feature information loss that degrades representational capacity.

Notably, in neural networks of any depth, exceeding the dropout threshold
of 0.5 may cause excessive node sparsity. This not only fails to enhance regu-
larization effects but may also disrupt information propagation pathways within
the network.

6 Conclusion

This paper addresses data scarcity and fusion inadequacy in multimodal tem-
poral knowledge graph EA by introducing ICEWS+ and proposing the DynEA
algorithm. DynEA employs a three-stage framework: multimodal temporal data
preprocessing, contrastive learning-based fusion weight training, and GNN encoder-
decoder processing. This enables dynamic fusion and precise alignment of cross-
modal temporal features. Experiments confirm that the contrastive learning
mechanism improves alignment accuracy, while the adaptive weight fusion strat-
egy enhances overall performance, validating the efficacy of multimodal collabo-
ration and dynamic fusion. This work provides novel tools for complex temporal
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entity alignment and establishes a foundational dataset, with future research tar-
geting cross-linguistic multimodal alignment and lightweight dynamic fusion to
advance knowledge graph alignment toward greater universality and practicality.
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