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ABSTRACT

The collective impact of GPS navigation services is unclear: while beneficial to the user, they can
also cause chaos if too many vehicles are driven through the same few roads. Our study employs a
simulation-based framework for evaluating the impact of navigation services, integrating real-world
mobility data and route recommendations offered by leading navigation services’ APIs. The results
demonstrate a universal pattern of amplified conformity: increasing adoption rates of navigation
services cause a reduction of route diversity of mobile travellers and increased concentration of traffic
and emissions on fewer roads, thus exacerbating an unequal distribution of negative externalities
on selected neighbourhoods. Although navigation services recommendations can help reduce CO2
emissions when their adoption rate is low, these benefits diminish or even disappear when the
adoption rate is high and exceeds a certain city- and service-dependent threshold. We summarize
these discoveries in a non-linear function that connects the marginal increase of conformity with
the marginal reduction in CO2 emissions. To isolate the core dynamics of traffic and emissions
concentration, we replicate our experiments in simplified mobility settings, confirming that these
patterns emerge independently of real-world urban complexity. Our simulation approach addresses
the challenges posed by the complexity of transportation systems and the lack of data and algorithmic
transparency.



Algorithmic navigation reduces route diversity and amplifies emissions inequality in cities

Introduction

The ascent of human-Al ecosystems in which humans interact with various forms of algorithms, including Al assistants
and recommender systems, multiplies the possibility for the emergence of large-scale behaviour patterns, possibly with
unintended consequences [1, 2, 3, 4, 5]. The aggregation of many individually “good” recommendations may have
unintended outcomes because human choices, influenced by these recommendations, interfere with each other on top of
shared resources.

We have evidence of this phenomenon in various contexts [1, 3]. Personalised recommendations on social media
help users deal with information overload but may artificially amplify echo chambers, filter bubbles, and processes of
radicalisation [6, 7, 8, 9, 10, 11, 12]. Profiling and targeted advertising may further increase inequality and monopolies,
with the harms of perpetuating and amplifying biases, discriminations, and the “tragedy of the commons" [13, 14, 15].
Mobile applications providing pedestrians directions to avoid high-crime areas make users feel safer but may make
dangerous areas more isolated, thus favouring a further increase in crime [16, 17, 18].

Notwithstanding, the collective impact of other pervasive recommender systems is still little understood. A notable
example is commercial navigation services (e.g., TomTom, Google Maps). These services recommend routes to a
destination, considering traffic conditions. Despite their indubitable usefulness, especially when exploring an unfamiliar
city, navigation services may also create chaos if too many drivers are directed on a few roads [19, 20, 21]. This was
the case of Leonia, a small town in New Jersey, USA. In 2017, GPS navigation apps repeatedly rerouted drivers on
congested highways through Leonia’s narrow streets, creating such congestion that people could not get out of their
driveways [21, 20]. Seven years later, in October 2024, a similar scenario played out in an Italian mountain area: many
travellers, trying to bypass highway queues by following Google Maps’ suggestions, were stuck in severe traffic jams
snaking through local villages [22]. These are not isolated cases: increasingly, many towns globally have been grappling
with the local gridlock caused by well-intentioned navigation apps [23, 24].

These incidents are extreme by-products of a generalised phenomenon: the impact of Al-driven recommender systems
on urban traffic. Research in this domain yields fragmented and contradictory results, primarily focused on specific
navigation services and individual urban contexts [1, 4, 3, 25, 26]. A notable exception is a 2021 study — unfortunately
not replicable — conducted by Google Maps in Salt Lake City, providing valuable insights into the real-world effects
of algorithmic navigation on human mobility [26]. The study identified measurable benefits, including an average
reduction of 6.5% in travel time and a 1.7% decrease in CO2 emissions. Apart from this particular study, existing
literature primarily examines routing principles rather than commercial navigation services. These studies suggest
routing strategies can effectively mitigate CO2 and NOx emissions [27, 28, 29, 30], reduce energy consumption [27],
decrease fuel usage [28], lower vehicle miles travelled [31], and minimize accident risks [32]. Nevertheless, they also
highlight potential drawbacks, such as increased travel times, heightened exposure of populations to NOx, elevated
traffic volumes in certain areas [29, 30], and unintended redistribution of highway traffic onto local streets, parks, tourist
destinations, and slower roads [31, 32]. Overall, we lack robust methodologies to fully understand the multifaceted
impact of navigation services on some externalities, such as road network usage and CO2 emissions. For example, what
would the urban impacts of various navigation services be under different traffic conditions and adoption rates? This
article contributes to this intriguing debate.

We design a data-informed simulation framework to study the influence of navigation services on road network usage
and CO2 emissions. Our open-source framework is a realistic digital twin of urban traffic that receives inputs from
real-world mobility data and integrates the route recommendations offered by commercial navigation services’ APIs. We
use the framework to conduct controlled simulations in three cities, in which we vary the adoption rate of a navigation
service. For each adoption rate, vehicles are randomly divided into treatment and control groups, with the treatment
group following route recommendations and the control group not adhering to them.
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We find that the aggregate impact of route recommendations is far from negligible. First, at high adoption rates and
across all cities and navigation services, route diversity considerably decreases, i.e., vehicles are predominantly routed
through fewer roads. These roads are typically highways and major arterial corridors, where CO2 concentrations are
further intensified. Second, we focus on the relationship between adoption rate and CO2 emissions. We discover that at
low traffic loads — when a few vehicles traverse the city (e.g., off-peak hours) — navigation services consistently suggest
optimal routes through an almost-empty road network, thereby reducing CO2 emissions. However, at high traffic loads
— when the traffic on the road network approaches congestion (e.g., peak hours) — the impact of navigation services
depends on the adoption rate. At a low adoption rate, the impact of navigation services is mainly beneficial and CO2
emissions decrease. However, once the penetration rate exceeds a service-specific threshold, these benefits diminish,
disappear, or even reverse. The relationship between the marginal shift in route diversity and the marginal shift of
CO2 emissions is well described by an exponential function. This enables us to forecast the marginal change in CO2
emissions as route diversity decreases, given the expansion of navigation service adoption throughout the population.
To uncover the mechanisms underlying the relationship between service adoption and urban traffic, we replicate our
experiments on a simplified representation of mobility demand and road networks. We then analyse how route diversity
and CO2 emissions vary across different adoption rates, finding that our results closely match the results obtained for
real cities.

Our study provides an unprecedented view of the impact of navigation services on urban traffic concerning the services’
adoption rate. Our framework, which applies to any city provided the availability of mobility demand and road
network data, may provide practical support for decision-makers in managing and mitigating the urban impact of
digital platforms. This becomes especially pertinent within the context of emerging regulations such as the European
Union’s Digital Services Act [33], which mandates risk assessments for major digital platforms and advocates for closer
examination of their societal effects.

Simulation framework

We design a simulation framework to study how various navigation services affect urban traffic under various adoption
rates and traffic loads. This framework exploits SUMO, an open-source, state-of-the-art simulation tool that generates a
lifelike representation of urban traffic based on a given road network and mobility demand (see Methods for details)
[34]. The simulation can capture the behaviour of a set of vehicles, including their routes, traffic congestion, queues at
traffic lights, and slowdowns due to heavy traffic, providing a realistic digital twin of vehicular traffic.

A city’s road network can be represented as a directed graph, where the set of nodes represents road intersections and
the set of edges represents road edges (individual segments that connect road intersections). We use road networks
made available on the public geographic information system OpenStreetMap (see Methods for details). We describe the
mobility demand within the city as an origin-destination (OD) matrix M, where each element m,, 4 € M indicates
the number of trips that start from location o and end at location d. An OD matrix may be obtained in various ways,
such as through travel surveys, GPS traces, mobile phone records, or smart card transactions [35, 36, 37, 38]. In
this study, we divide the city into equally sized square tiles and leverage real-world GPS traces from thousands of
private vehicles to compute the number of vehicles moving between any two tiles (see Methods for details). We then
randomly select N trips, where each trip T, = (e,, €4, t) is obtained by randomly selecting an element m, 4 € M
with probability p, q o< m, 4, uniformly selecting two road edges e,, e within the corresponding tiles o and d, and
uniformly selecting a starting time ¢ during one hour. This procedure constitutes a foundational step of the simulation
framework, translating the aggregate mobility captured by the OD matrix into a set of individual vehicle trips. This
conversion enables the simulation of realistic traffic dynamics that reflect the underlying spatial pattern of urban mobility
demand. See Supplementary Note 1 for further details on the computation of the mobility demand.

We rely on public API-based navigation services to generate trip routes on the road network (see Methods for details).
These services recommend a route between an origin road edge e, and a destination road edge e4 considering various
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factors, such as the typical traffic conditions at the time ¢ when the trip (e, eq, t) starts. The trip (e,, €4, t) allows us to
simulate drivers’ typical requests for these services, such as “Take me from location A to location B by car at 3:30 PM”.
Note that navigation services also consider real-time traffic conditions in the real world when providing routes. These
real-world conditions can be unpredictable due to exogenous factors that happen in real time (e.g., strikes, accidents,
and works in progress). To ensure consistency with our simulated traffic, we force the use of historical information by
making the request for a future time with respect to the time of the simulation. This means the suggested route is the
most convenient choice (according to the navigation service) given the city’s typical traffic conditions at that time.

We consider a collection S of popular navigation services with public APIs, including Google Maps (GM), MapBox
(MB), Bing Maps (Bi), TomTom fastest route (TTF), TomTom shortest route (TTS), and TomTom eco routing (EcoTT).!
See Supplementary Note 2 for details. Figure 1a-b shows how different navigation services may provide different either
overlapping (a) or diverging (b) routes. This variation arises because the services rely on different criteria and possess
diverse historical data on traffic conditions. We observe that the average overlap between the routes provided by these
services ranges from 70% to 97% (see Supplementary Note 2). Note that these algorithms are black boxes to us since
the implementation specifics of these services are unknown. We refer to a trip that follows a route suggested by a
navigation service s € S as an s-routed trip.

To assess how a navigation service s € S affects traffic in a given city, we design controlled experiments [3] varying
the rate of adoption of s in the range r = 0%, 10%, 20%, . .., 100%. Given r, we assign r% of vehicles to a treatment
group and the remaining (100 — )% of vehicles to a control group. Vehicles in the treatment group are s-routed, while
those in the control group follow a modified version of the fastest route on the road network computed by SUMO
2. This modification slightly lengthens the fastest route to account for the imperfections and irrational behaviour of
human drivers [39] (see Methods and Supplementary Note 3). We assume that vehicles in the control group select their
routes independently of one another, without knowing the choices of the other vehicles. For statistical robustness, the
simulation for a given adoption rate 7 is repeated ten times, using different random compositions of the treatment and
control groups in each run. Furthermore, we repeat all the above steps considering both low and high traffic loads. Low
traffic loads refer to situations with few circulating vehicles in the city, such as off-peak hours and nighttime. High
traffic load indicates that the traffic is approaching congestion, for example during peak hours. See Supplementary Note
4 for details.

We evaluate the impact of navigation services in isolation, where all the vehicles in the simulation use the same service,
and in combination, where vehicles may choose among different services. We present only the isolation scenario
because the results are analogous (Supplementary Note 5 shows results for the other scenarios). To assess the urban
impact of navigation services, we evaluate route diversity, i.e., the number of road edges traversed at least once by any
vehicle and the total CO2 emissions produced by the vehicles. We compute the CO2 emissions through a microscopic
emission model provided by SUMO [34] that estimates the vehicle’s instantaneous emissions as a function of speed and
acceleration (see Supplementary Note 6).

Our experimental setup has a main limitation that stems from interaction effects between vehicles on the road network
[40]. The control group cannot be completely separated from the indirect effects of recommendations, as vehicles in the
control group may encounter on the streets vehicles in the treatment group. Despite being a randomized controlled
simulation, our experiments do not satisfy the Stable Unit Treatment Value Assumption from causal inference [41]. As
a result, we cannot provide unbiased estimates of causal quantities of interest, such as the average treatment effect. This
is a common scenario when conducting controlled experiments in complex social systems, which also applies to social
media platforms [7]. Intuitively, we anticipate peer effects to reduce observable differences between the control and
treatment groups. Therefore, our reported statistics likely underestimate the true causal effects of recommendations by
navigation services.

! AppleMaps, Waze, and Google Maps eco-routing are unavailable due to the absence of public APIs.
*https://sumo.dIr.de/docs/duarouter.htm]
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Impact of navigation services

We conduct experiments in three cities in Italy: Florence, Milan, and Rome. These cities were chosen due to the
availability of GPS traces to compute the mobility demand and their heterogeneity in size, population, and road network
structure. For instance, Rome features an expansive road network with relatively long street segments and moderately
winding roads. Milan is slightly smaller than Rome and is characterised by shorter street segments and a more regular
network structure. Florence, the smallest, has the most winding and spatially intricate network. See Supplementary
Table S1 for detailed statistics on the road networks.

Figure 2a-c illustrates the impact of varying the service adoption rate r on route diversity in the selected cities,
considering high traffic loads. Results for low traffic loads are similar (see Supplementary Figure S1). If the navigation
service had a negligible impact, we would expect a stable route diversity as r increases (horizontal dashed line in Figure
2a-c). Contrary to the assumption of insignificance, route diversity varies considerably with r following an exponential
function (see Supplementary Note 7). When 7 is below a specific city- and service-dependent threshold (=25-50%),
route diversity slightly increases by 0.15-1.05% in Florence, 0.08-0.34% in Milan, and 0.01-0.41% in Rome (see inset
plots in Figure 2a-c) compared to the no-impact scenario (r = 0%). On the other hand, when r exceeds this threshold,
route diversity considerably decreases. At the total adoption rate (r = 100%), route diversity is considerably reduced
by 11.80-14.34% in Florence, 3.79-6.87% in Milan, and 9.73-14.26% in Rome compared to the no-impact scenario. We
also examine the distribution of route diversity separately for vehicles in the treatment and control groups at various
adoption rates. We find that vehicles in the treatment group exhibit significantly lower route diversity compared to
vehicles in the control group, regardless of the adoption rate (see Supplementary Note 8).

These results demonstrate that increased adoption of navigation services reduces route diversity, leading to inefficient
use of the road network. These trends are consistent under low and high traffic loads, with only minor fluctuations
among navigation services. The reduction in route diversity emerges because navigation services tend to offer the
same route to all vehicles with identical trips, leading to a concentration of traffic on fewer roads. This behaviour is
exacerbated by the structure of the OD matrix, in which a small number of flows involve a large number of trips, while
the majority involve fewer trips [42].

Figure 2d-f shows the average CO2 emissions per vehicle produced at different adoption rates and traffic loads. When
the traffic load is low, navigation services are generally beneficial: in most cases, CO2 emissions are lower than they
would be in the no-impact scenario (see Figure 2d-f), showing a near-linear decreasing trend with r. At the total
adoption rate, navigation services can reduce CO2 emissions by 2.15-5% in Florence and 6.64-11.13% in Milan. In
Rome, some navigation services reduce CO2 emissions by 0.26-3.69%, while GM, TTF and Bi slightly increase them
by 2.4%, 1.13% and 1.57%, respectively.

However, at high traffic loads, the impact of navigation services depends on the adoption rate . When 7 is low, CO2
emissions decrease considerably; when r exceeds a certain city- and service-dependent threshold, the benefits plateau
and in some cases CO2 emissions increase (see Figure 2d-f). Note that as the adoption rate reaches » = 100% the
overall CO2 emissions become concentrated on a small fraction of roads due to the decreased route diversity, thereby
increasing the inequality of distribution of CO2 emissions on roads (see Supplementary Note 9). Figure 3a-c illustrates
this effect in Milan for navigation service TTF: at a 0% adoption rate (Figure 3a), the traffic distribution is more even,
whereas at a 100% adoption rate (3b), there is a concentration of traffic and CO2 emissions on fewer roads. This effect
is further illustrated by the increase in the Gini coefficient of CO2 emissions across roads at r = 0%, r = 50%, and
r = 100% adoption rates (see Figure 3d-f and Supplementary Figure S11). In Florence and Milan, emissions are more
evenly distributed at 50% adoption than at 0% or 100%, reflecting a temporary rise in route diversity before route
convergence takes hold. At 100% adoption, emissions become significantly more concentrated: the Gini coefficient
increases by 0.023 in Florence, 0.025 in Milan, and 0.031 in Rome compared to 50% adoption. This corresponds to an
additional 2.04% (Florence), 2.31% (Milan), and 3.9% (Rome) of total CO2 emissions being concentrated on the top
20% most polluted roads.
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Across all cities, we observe a consistent shift of routes, and consequently CO2 emissions, toward high-capacity
infrastructures such as highways and major arterial corridors (attractors). These attractors are designed to accommodate
large traffic volumes and are often favoured by navigation algorithms aiming to minimise travel time. Although
attractors account for only about 6% of the total road network in each city, they absorb a disproportionately large
share of CO2 emissions, and this imbalance intensifies with higher adoption rates (see Figure 3g-i). From 0% to 100%
adoption, the share of emissions on attractor roads rises from 17.61% to 36.25% in Florence, 9.94% to 26.42% in Milan,
and 26.02% to 33.66% in Rome. Therefore, navigation services exacerbate the burden on already “grossly polluted
roads” [43], making them even more heavily trafficked and environmentally degraded. The full breakdown of CO2
emissions by road type is provided in Supplementary Note 10.

In Florence, the most effective adoption rate for all navigation services is around r = 70-80%, resulting in an average
CO2 reduction of about 27%; after this point, the benefits diminish (see Figure 2d). In Milan, GM and TomTom-based
services (TTF, TTS, and ecoTT) consistently reduce CO2 emissions as r increase, achieving reductions of approximately
19-22% at the total adoption rate. In contrast, MB and Bi reach their highest reductions (~12%) when r = 60% and
r = 70%, respectively; beyond these rates, the benefits considerably diminish (CO2 reductions decrease by 9%). In
Rome, optimal adoption rates vary by service: 20% for Bi, 40% for MB, GM and TTF, 60% for TTS, and 70% for
ecoTT, leading to an average CO2 reduction of 3.29%. Notably, Bi, MB, GM and TTF in Rome lead to increased CO2
emissions beyond certain thresholds compared to the baseline scenario: 9.10% for Bi, 4.61% for MB, 2.22% for GM
and 0.52% for TTF (see Supplementary Table S2 for details on the CO2 reductions).

Our results reveal that even an eco-routing service (EcoTT) shows CO2 trends similar to the other navigation services
(see brown squares in Figure 2). This suggests that relying solely on eco-routing is inadequate for fully controlling the
impact of algorithmic urban recommendations. Being eco-friendly is not just a property of an individual route but also
of drivers’ aggregate behaviour.

We also explore the relationship between route diversity and total CO2 emissions during periods of high traffic load by
examining the correlation between AD,. and AFE,.. Here, AD,. represents the marginal change in route diversity, while
AE, denotes the marginal change in CO2 emissions. We compute AD,. as the difference in route diversity values
between adoption rates  — 10% and r. Similarly, AE.,. is the difference in CO2 emissions over the same interval. A
positive AE,. indicates a decrease of CO2 emissions at adoption rate r compared to r — 10%, whereas a positive AD,.
indicates a decrease of route diversity at r compared to r — 10%.

In Florence, Spearman’s rank correlation coefficient is p = —0.958; in Milan, it is p = —0.882, and in Rome, it is
p = —0.899. This relationship is well described by an exponential decay function: AE, = ae™ 2P 4+ ~. In this
formula, the coefficient 5 measures how quickly incremental CO2 changes (A E,.) respond to incremental changes in
route diversity (AD,). A higher /3 indicates a more rapid CO2 change per unit change in route diversity. Milan has the
highest coefficient value (3 = 0.0068), indicating that changes in route diversity have a more significant impact on
CO2 reduction compared to Florence (5 = 0.00313) and Rome (5 = 0.00226).

Figure 4a-c illustrates this trend. At low adoption rates, slight increases in route diversity (i.e., a negative AD,.,
highlighted in grey) lead to substantial reductions in CO2 emissions. As r increases, small reductions in route diversity
result in moderate CO2 reductions. However, as A D,. further increases, A E,. decreases, indicating a diminishing return
effect. This pattern is consistent across all cities and navigation services (Figure 4d-f), suggesting that while initial
efforts to optimize routes are highly effective, their efficiency decreases as further reductions in route diversity yield
progressively smaller CO2 reduction benefits. Therefore, the positive impact of navigation services on reducing CO2
emissions diminishes as route diversity decreases.
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Core driving factors of concentration patterns

Navigation services reduce route diversity, amplifying the concentration of traffic and CO2 emissions on fewer roads.
To better understand the phenomenon, we investigate whether its key effects emerge independently of the structural
complexity of real-world cities. We do that by replicating our experiments on a simplified road network and two flow
configurations. This abstraction allows us to isolate the core dynamics of the phenomenon. In this scenario, routed
vehicles follow the fastest route — as a proxy for navigation service recommendations — while non-routed vehicles
follow slightly perturbed variations of this optimal route. All roads are bidirectional and have identical speed limits,
ensuring uniform travel conditions across the entire road network.

We first simulate a single OD flow on a 10 x 10 grid network (see Figure 5a), where all vehicles share the same origin
and destination and vary the adoption rate as in the experiments on real cities. We find that, as the adoption rate
increases, route diversity declines but CO2 emissions continue to decrease steadily (see Supplementary Figure S24).
This suggests that reduced route diversity alone does not necessarily lead to inefficiencies, likely due to the limited
interactions among vehicles in this simplified setting.

To enforce vehicle interactions, we simulate two orthogonal OD flows on the same grid (see Figure 5b). The fastest
routes of these flows intersect at the centre of the grid, causing vehicles to converge at shared crossroads and triggering
congestion. Despite its simplicity, this setup reproduces all key patterns observed in real cities as the adoption rate
approaches full adherence (see Figure Sc-e): a sharp reduction in route diversity (c), a plateau in CO2 emissions (d),
and a nonlinear relationship between AD,. and AFE, (e). The simplified setting also captures the rise in CO2 inequality
as adoption approaches 100%, with the increasing Gini coefficient aligning closely with the patterns observed in real
cities (see Supplementary Figure S30). We extend the analysis to a larger grid and randomised grid-like networks to
verify that our results are not an artefact of the road network size and regularity. We find that the same patterns persist
(see Supplementary Figures S25-S31). Full experimental details, including grid configurations, randomised network
generation, and additional scenarios, are provided in Supplementary Note 11.

The emergence of traffic and emissions concentration, even in a minimal setting, suggests that the patterns observed are
not tied to specific urban features and are likely to generalise across a broad range of city contexts.

Discussion

Navigation services may offer benefits under certain conditions, but they also reshape traffic patterns, environmental
quality, and social equity within urban ecosystems. In all the real-world cities we analysed, as well as in our simplified
city scenarios, a consistent pattern emerged: as adoption rates increase, traffic and CO2 emissions become increasingly
concentrated on a smaller subset of roads — a consequence of reduced route diversity. These roads are typically
highways and major arterial corridors, where CO2 concentrations are further intensified. This spatial concentration
carries significant implications for urban policy, the governance of digital platforms, and human-Al interaction.

The first major consequence is the amplification of urban inequality. As navigation services redistribute traffic, some
neighbourhoods are burdened with disproportionate levels of congestion and pollution, while others remain largely
unaffected. Roads absorbing higher volumes of vehicles may experience declines in property values and quality of life,
while areas bypassed by traffic may lose footfall and customer revenue. Moreover, navigation services may conflict
with municipal routing strategies designed to protect sensitive areas — such as schools, hospitals, and parks — thereby
undermining carefully crafted safety and equity policies. The severe congestion experienced in Leonia and Italian
mountain villages highlights how algorithmic routing can rapidly disrupt local traffic patterns.

Second, the relevance of our study extends beyond navigation services alone. Recent research on car-sharing and
ride-hailing platforms has linked these services to increased congestion and emissions, reduced public transport usage,
and growing concerns around social equity [3, 44, 16]. However, much like the literature on navigation services, these
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studies tend to focus on specific platforms and individual urban contexts. Our simulation framework, being both
data-driven and city-agnostic, can be readily adapted to assess the impact of these mobility services as a function of
their adoption rate, and to evaluate potential strategies for mitigating their unintended consequences.

Finally, this work contributes to the broader discussion on human—AlI coevolution [1]. Navigation services operate
within a dynamic feedback loop: traffic patterns influence algorithmic recommendations; these recommendations shape
drivers’ route choices, and those choices, in turn, alter future traffic patterns. Our study reveals a strong interdependence
between adoption rate, route diversity, and CO2 emissions within this loop. The next step is to understand how this
relationship evolves over time as both individuals and navigation services continuously adapt to one another. Such
insights will be crucial for designing online platforms that are not only efficient, but also equitable and sustainable in
the long run.

Our study can be easily reproduced in any city, as it only requires widely available data on the city’s mobility demand
and road network, as well as publicly accessible navigation services’ APIs. Upcoming legislation, such as the EU’s
Digital Services Act and Digital Market Act [33], mandates the introduction of transparency measures on the algorithms
used by very large online platforms, including navigation services, for recommending content or products to users. In
this regard, our study marks an initial stride towards systematically assessing algorithmic influence on urban ecosystems
and a conceptual and methodological foundation for agile responses to collective goal challenges. By understanding
and managing the relationship between drivers and navigation services, we have the potential to anticipate the level of
emissions in our urban environments and take immediate, informed actions when they overcome a certain tolerance
threshold. This is crucial because the decisions made by policymakers rely on the accuracy of our measurements and
the promptness of our response to these measurements.

Methods

Road Networks. We model a city’s road network as a directed weighted multigraph G = (V, E), where V' denotes
the set of nodes representing intersections, and F is a multiset of edges representing the road segments connecting
the vertices. Each edge e; ; € E, with 4, j € V, is associated with its minimum expected travel time t(e; ;), capacity
c(e; ;), and speed limit s(e; ;).

We extract the road networks using OSM Web Wizard, which retrieves and pre-processes road network data from
OpenStreetMap (OSM). Following the approach described in [45], we manually fine-tune the road networks to correct
inaccuracies that could potentially cause deadlocks and other unrealistic behaviours, thus negatively impacting the
simulations. This fine-tuning phase includes correcting lane number inaccuracies, addressing road continuity disruptions,
and modifying turns to align with real-world conditions. We use Google Maps and StreetView as benchmarks to ensure
the accuracy of these adjustments.

Traffic simulator. SUMO (Simulation of Urban MObility) is an open-source agent-based traffic simulator allowing
intermodal traffic simulation, including road vehicles, public transport, and pedestrians [34]. It simulates each vehicle’s
dynamics, considering interactions with other vehicles, traffic jams, queues at traffic lights, and slowdowns caused by
heavy traffic, supporting various route choice methods and routing strategies [45].

To simulate a traffic scenario, SUMO requires two input elements: a road network and a traffic demand. The road
network describes the virtual road infrastructure where simulated vehicles move during the simulation. The traffic
demand outlines the vehicles’ movement on the road network. We describe a vehicle’s movements as a route, i.e., a
sequence of interconnected edges linking an origin to a destination and a departure time.

SUMO can simulate vehicular pollutant emissions utilizing the HBEFA3 emission model derived from the Handbook
of Emission Factors for Road Transport (HBEFA) database [46]. The HBEFA3-based model estimates the vehicle’s
instantaneous CO2 emissions relying on the following function, which is linked to the power the vehicle’s engine
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produces in each trajectory point j to overcome the driving resistance force [46]:

E(j) =co+c1sa+ casa® + 38 + cu8° + c58°
where s and a are the vehicle’s speed and acceleration in point j, respectively, and ¢y, . . . , ¢5 are parameters specific to
each emission type and vehicle taken from the HBEFA database. In this work, we use SUMO version 1.19.0.

Navigation services APIs. Vehicles in the treatment group follow routes suggested by various navigation services.
We utilise a collection of widely-used navigation services with publicly accessible APIs, including Bing Maps (Bi),
MapBox (MB), TomTom eco routing (EcoTT), TomTom fastest route (TTF), and TomTom short (TTS). These services
provide routes between an origin and a destination at a specified departure time, considering various factors, such as
typical traffic conditions at the time of departure. The rationale behind selecting these specific navigation services is
based on their popularity, availability of public APIs, and variety in routing criteria, which provide a broad perspective
on route suggestions. Additionally, these services cover many routing preferences, from eco-friendly to the fastest and
shortest routes, offering a comprehensive comparison. Table 1 presents a detailed overview of the key characteristics of
each navigation service, including the service name, service provider, whether it accounts for historical traffic, the name
of the profile used (i.e., the routing criteria), a description, and the URL of the reference documentation.

As the route recommendations from the APIs are typically provided as sequences of GPS points, we employ a map-
matching procedure to integrate these routes into the SUMO simulator. Specifically, we apply the state-of-the-art
Longest Common Subsequence (LCSS) algorithm [47] to convert the sequence of GPS points into a sequence of
connected edges in the SUMO road network, accurately representing the suggested routes.

Modified fastest route. Vehicles in the control group follow a modified version of the fastest route implemented by
SUMO’s duarouter algorithm.? Duarouter is a tool for simulating human driving and routing behaviour. It computes
vehicle routes with an adjustable degree of variability, controlled by a parameter w € [1,+00). When w = 1, duarouter
calculates the standard fastest route on the road network. When w > 1, it dynamically alters the edge weights (expected
travel time) by a random factor uniformly drawn from the interval [1, w). This random process ensures that different
vehicles may get different routes even if their trip has the same origin and destination. As w increases, the extent of
randomness in the route calculation also increases, resulting in routes that can diverge significantly from the fastest
route (see Supplementary Note 3). This increased route variability helps us model the imperfections of human driving
behaviour, which often deviates from the fastest route due to personal preferences, lack of complete knowledge of the
road network, and irrational behaviours [39, 48]. In our experiments, we set w = 5 to introduce a moderate level of
randomness in the control group’s routing. To assess the robustness of this choice, we also perform simulations using
w = 3 and w = 7, corresponding to lower and higher levels of variability. As detailed in Supplementary Note 3, the
results remain qualitatively and quantitatively consistent across these settings, demonstrating that our findings are not
sensitive to the specific choice of w.

GPS Data. To estimate each city’s mobility demand, we use a vehicular GPS trajectory dataset provided by OCTO,
a company that provides a data collection service for insurance companies. This dataset describes the trajectories of
thousands of vehicles for various Italian localities over an entire year. While the market penetration of the dataset
varies, it generally represents a minimum of 2% of the total registered vehicles. Our analysis focuses on the cities of
Florence, Milan, and Rome, selected due to the availability of GPS traces suitable for computing origin-destination
(OD) matrices, their diverse sizes, populations, and road network structures. The raw dataset includes 7,102,351 GPS
points from 24,640 vehicles in Florence, 143,698,720 GPS points from 106,456 vehicles in Milan, and 26,801,872 GPS
points from 30,763 vehicles in Rome. The dataset’s validity and reliability are corroborated by its extensive use in prior
studies [49, 50, 43].

3https://sumo.dlr.de/docs/duarouter.html
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We process the raw GPS dataset to create segmented trajectories that represent semantic journeys as follows:

* We eliminate noise by filtering out GPS points with speeds exceeding 250 km/h [51];

* We use a stop detection algorithm [51, 37] to segment each trajectory into sub-trajectories based on identified
stops. A stop is identified when a vehicle remains within a distance of 0.2 km from a trajectory point for at
least 20 minutes;

* We consider only trips that start and end within the predefined area of interest. For trips that start or end outside
this area but traverse it, we used the first entry point within the area as the origin and the last exit point as the
destination. This method preserves commuter trips originating or ending outside the city.

To compute the OD matrix reflecting a city’s traffic patterns, we first discretize the city into 1 km? squared tiles using
scikit-mobility [37]. We then extract flows from the pre-processed segmented trajectories to fit the OD matrix.

We compute the flows by considering only trips with a duration between 5 and 60 minutes that depart during the
morning peak hours on all Wednesdays. Focusing on morning peak hours allows us to model high-traffic scenarios, as
they represent periods of intense traffic congestion. By selecting Wednesdays, we ensure the capture of typical weekday
traffic, avoiding anomalies associated with weekends or specific weekdays with unique traffic patterns. We exclude
outlier weeks (e.g., holidays) from the analysis. Additionally, we filter out infrequent flows, retaining only those that
occur regularly. See Supplementary Note 1 for further details on the pre-processing and flow computation.

After the pre-processing step, the dataset used to compute the OD matrix includes 5,477 trips from 1,184 vehicles for
Florence (616 distinct flows); 113,323 trips from 15,997 vehicles for Milan (11,967 distinct flows); and 13,647 trips
from 1,965 vehicles for Rome (1,757 distinct flows).

For each city, based on the pre-processed data, we obtain an origin-destination matrix M, where an element m, g € M
denotes the number of trips that start in tile o and end in tile d. Each vehicle’s trip starting and ending tiles determine
the origins and destinations.

10
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| provider profile name profile description url
Bi Bing Maps timeWithTraffic optimization of travel time using current bit.ly/ref_b
traffic information.
PN lowest probability of slowdowns given .
Lk Maphox driving-traffic current and historical traffic conditions. bit.ly/ref_mb
ecoTT | TomTom eco trade-off petween travel time and fuel bitly/ref_tt
consumption
TTE TomTom et shortest tra_vel time while keeping the bitly/ref_tt
routes sensible.
TTS TomTom short :;a;j;gif between travel time and travel bit.ly/ref_tt
GM | Google Maps  not available not available bit.ly/ref_gm

Table 1: Characteristics of navigation services’ APIs: service provider, routing criteria (profile name), description of the
routing strategy, and URL with the documentation.

a) b)
DESTINATION

ORIGIN

Bi
MB
ecoTT
TTF
TTS
GM

ORIGIN

avg. overlap = 63.44% avg. overlap = 17.17%

Figure 1: Routes recommended by navigation services. (a, b) Two origin-destination pairs in Milan and the
corresponding routes suggested by different navigation services. Panel (a) shows a case where recommendations largely
overlap (average overlap = 63.44%), while panel (b) illustrates a case with significant divergence (average overlap =
17.17%). This variation occurs because the services rely on different criteria and possess diverse historical data on
traffic conditions.
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Figure 2: Impact of navigation services on route diversity and CO2 emissions. (a-c) Service adoption rate (1) versus
route diversity at high traffic loads in Florence, Milan, and Rome. The dashed line represents the no-impact scenario
(r=0%). Markers indicate the average route diversity over ten simulations with different random choices of s-routed
vehicles. Squares refer to the navigation service ecoTT, which employs eco-routing. Vertical bars indicate the standard
deviation. The inset plots zoom on the range r = 0%, . .., 50%, where route diversity slightly increases. Increased
adoption of navigation services reduces route diversity, with only minor fluctuations among navigation services. (d-f)
Service adoption rate () versus average CO2 emissions per vehicle at high (filled markers) and low (empty markers)
traffic loads. The dashed line represents the no-impact scenario (r = 0%). Markers indicate the average CO2 emissions
over ten simulations with different random choices of s-routed vehicles. Squares refer to ecoTT. Vertical bars indicate
the standard deviation. At high traffic loads, when r is low, CO2 emissions decrease considerably; when r exceeds a
certain city- and service-dependent threshold, the benefits plateau and, in some cases, even reverse.
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Figure 3. Road usage of navigation services. (a, b) Route distribution of trips in Milan with TomTom Fastest (TTF) at
adoption rates r=0% (a) and r = 100% (b). Darker edges indicate higher traffic concentration. Traffic is concentrated
on fewer road edges at r=100%. (c¢) Difference in road usage between r = 100% and r = 0%. Blue edges indicate
segments where traffic decreases under full adoption of TTF; red edges highlight segments where traffic increases. (d—f)
Gini coefficient of CO2 emissions across roads at r = 0%, 50%, and 100%. Emissions are most equally distributed at
50% adoption but become increasingly concentrated at full adoption. (g—i) Share of total CO2 emissions produced on
major attractor roads (e.g., highways and arterial corridors) as adoption increases. Despite representing only ~6% of
the road network, these roads absorb a disproportionate and growing share of emissions.
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Figure 4: Relationship between route diversity and CO2 emissions. (a-c) The relationship between the marginal
change in route diversity (A D) and the marginal change in CO2 emissions (A E) for TTF in Florence, Milan, and Rome.
We find similar results for the other navigation services. The points are shaded from light grey to black, representing the
service adoption rate (from r=10% to r=100%). (d-f) Same relationship for all navigation services. Regions where
AD or AFE are negative are highlighted in grey. The black dashed line represents the exponential decay fit for each
scenario. At low adoption rates, slight increases in route diversity lead to substantial reductions in CO2 emissions. As r
increases, small reductions in route diversity result in moderate CO2 reductions. However, as A D further increases,
AF decreases, indicating a diminishing return effect. This pattern is consistent across all cities and navigation services.
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Figure 5: Impact of navigation service adoption in a simplified setting. (a, b) Schematic of a 10x10 grid network
with synthetic OD flows. Panel (a) shows a single OD flow; panel (b) introduces two intersecting OD flows that increase
vehicle interactions at the grid centre. Routed vehicles follow the fastest route, while non-routed vehicles take perturbed
variants. (¢) Route diversity as a function of adoption rate r. With two OD flows, route diversity decreases rapidly as
r increases, replicating patterns observed in real cities. (d) Average CO2 emissions per vehicle versus adoption rate.
Emissions initially decline, then plateau due to increased congestion at shared intersections. (e) Marginal relationship
between changes in route diversity (A D) and CO2 emissions (A F), showing a nonlinear trend consistent with urban
scenarios. Points are shaded from light grey to black to represent increasing adoption rates from r = 10% to r = 100%.
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Data availability statement The processed road networks for Florence, Milan, and Rome utilized in this study are
accessible at https://github.com/GiulianoCornacchia/Urban-Impact-Navigators. The OCTO dataset used in our research
is proprietary and thus not publicly available. Consequently, we cannot provide the original OD matrices derived from
this dataset. To overcome this limitation, we have provided the necessary code to generate an OD matrix for Milan
utilizing a publicly accessible dataset available at https://ckan-sobigdata.d4science.org/dataset/gps_track_milan_italy.
Additionally, we provide a routine to create random OD matrices, which can be helpful in scenarios where trajectory
data is unavailable.

Due to proprietary restrictions, the specific navigation service suggestions used in our study cannot be included.
However, we have included code to generate the fastest route, replicating the functionality of a navigation service
prototype. This code also includes routines to generate perturbations of the fastest routes for non-routed vehicles.
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