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Abstract. Class imbalance remains a fundamental challenge in ma-
chine learning, with traditional solutions often creating as many prob-
lems as they solve. We demonstrate that group-aware threshold cali-
bration—setting different decision thresholds for different demographic
groups—provides superior robustness compared to synthetic data genera-
tion methods. Through extensive experiments we show that group-specific
thresholds achieve 1.5-4% higher balanced accuracy than SMOTE and
CT-GAN augmented models while improving worst-group balanced ac-
curacy. Unlike single-threshold approaches that apply one cutoff across
all groups, our group-aware method optimizes the Pareto frontier be-
tween balanced accuracy and worst-group balanced accuracy, enabling
fine-grained control over group-level performance. Critically, we find
that applying group thresholds to synthetically augmented data yields
minimal additional benefit, suggesting these approaches are fundamen-
tally redundant. Our results span seven model families including linear,
tree-based, instance-based, and boosting methods, confirming that group-
aware threshold calibration offers a simpler, more interpretable, and more
effective solution to class imbalance.

Keywords: Class imbalance · Group-aware thresholds · Balanced accu-
racy · Interpretable fairness

1 Introduction

Algorithmic scores increasingly gate access to credit, welfare, and jobs. When
they underrate certain groups they block housing, entrepreneurship, and civic
participation, breaching fairness mandates such as the EU AI Act and the U.S.
Equal Credit Opportunity Act. A frequent technical culprit is class imbalance: if
99% of records are legitimate, a model that predicts no default everywhere enjoys
99% accuracy while failing exactly where oversight matters. We propose a practical
alternative—group-aware threshold calibration—that assigns separate decision cut-
offs to each protected group, outperforms heavyweight oversampling pipelines, and
gives auditors an explicit lever over group-level error rates. Experiments on two
financial benchmarks show that responsibly leveraging sensitive attributes in this
way lifts both overall and worst-group balanced accuracy, reinforcing evidence that
such attributes can be a powerful instrument for fairness. These results challenge
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Fig. 1. Left: Classification of male and female non-defaulters and defaulters in a single
threshold setting. This single threshold performs poorly, misclassifying three out of
seven individuals (roughly 57% accuracy). Right: Classification of male and female
non-defaulters and defaulters in a group thresholding scenario, in which there is a
separate threshold for males and females. In this case, the model correctly classifies all
individuals as either defaulting or non-defaulting.

blanket bans on their use, suggesting that tightly regulated access—rather than
wholesale exclusion—may be essential for the equity goals those laws pursue,
even as many practitioners still default to synthetic oversampling.

Synthetic approaches like SMOTE [4] and CT-GAN [18] attempt to balance
datasets by creating artificial minority class samples. However, recent evidence
suggests these methods introduce problematic artifacts. As demonstrated across 71
datasets, oversampling methods often lead to overfitting and poor generalization,
with the authors concluding that oversampling should be avoided in real-world
applications [11]. As these synthetic samples often create overlapping class regions
that confuse decision boundaries rather than clarifying them.

We propose a fundamentally different approach: rather than manipulating
training data and hoping for improved outcomes, we directly optimize for balanced
accuracy through group-aware threshold calibration. Unlike single-threshold
approaches that apply one decision boundary across all samples, group-aware
thresholds recognize that different groups may require different decision criteria
due to varying base rates or feature distributions [10]. Figure 1 illustrates this
concept concretely.

2 Background and Related Work

2.1 The Limitations of Accuracy in Imbalanced Settings

Traditional accuracy fails catastrophically with class imbalance. Consider a
dataset with 95% negative and 5% positive examples—a classifier predicting
all negatives achieves 95% accuracy while completely failing to identify any
positive cases. This paradox [9] has motivated alternative metrics that give equal
importance to all classes.
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Balanced accuracy addresses this by averaging per-class accuracies:

BA =
1
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TN
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)
=
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2
(1)

This formulation ensures that a trivial all-negative classifier achieves only 50%
balanced accuracy, properly reflecting its failure on the positive class. Recent work
by [15] connects balanced accuracy optimization to distributional robustness,
providing theoretical foundations for its use in fairness-critical applications. The
connection between worst-group performance and distributional robustness has
been further established by [13], who show that optimizing for worst-group
accuracy provides guarantees against distribution shift.

2.2 Synthetic Data Generation: Promise vs. Reality

SMOTE generates synthetic minority samples by interpolating between existing
instances and their k-nearest neighbors. While intuitive, this approach suffers from
several fundamental limitations. [3] showed that SMOTE can increase classifier
variance without improving minority class recognition in high-dimensional settings.
More recently, the comprehensive GHOST study by [8] tested 138 datasets and
found that threshold optimization significantly outperformed SMOTE for 75% of
ML methods tested.

A critical limitation identified by [12] is that SMOTE and similar oversampling
methods lead to poorly calibrated probability estimates, with significantly worse
Log-Loss and Brier scores compared to threshold-based approaches. This calibra-
tion degradation is particularly problematic for applications requiring meaningful
confidence scores, such as medical diagnosis or financial risk assessment.

CT-GAN attempts to address these issues through conditional generative
adversarial networks, learning the underlying data distribution rather than simple
interpolation. However, [7] found that even sophisticated generative models
struggle with tabular data, often producing unrealistic feature combinations that
don’t respect complex dependencies in real-world datasets. Our experiments
confirm these findings, revealing that CT-GAN fails to improve upon simple
threshold optimization despite its computational complexity.

2.3 Group-Aware Threshold Optimization

Traditional threshold optimization applies a single cutoff across all predictions.
However, when protected groups exhibit different base rates or feature distri-
butions, this one-size-fits-all approach can perpetuate disparities. Group-aware
threshold optimization addresses this by learning separate thresholds for each
demographic group, a approach that [5, 10] show can achieve optimal fairness-
accuracy trade-offs under certain conditions.

Formally, for groups g ∈ {1, ..., G} and predicted probabilities pi, we learn
thresholds τg such that:

ŷi = ⊮[pi ≥ τg(i)] (2)
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where g(i) denotes the group membership of instance i. This enables fine-
grained control over group-level true positive and false positive rates.

3 Methods

3.1 Experimental Setup

We evaluate our approach on two benchmark datasets with natural class imbalance
and protected groups. The UCI Default of Credit Card Clients dataset contains
30,000 instances with 22.1% default rate using sex as the protected attribute.
The Adult Income dataset includes 48,842 instances with 24.1% high-income rate,
using race as the protected attribute.

For each dataset, we implement four approaches. The baseline uses models
trained on original imbalanced data with a single threshold. SMOTE applies
group-aware oversampling to balance classes per demographic, implemented by
separately generating synthetic samples for male and female subgroups to avoid
information leakage between groups, following recommendations by [2, 6]. CT-
GAN performs conditional generation with demographic conditioning, where we
train the generative model for 5 epochs and condition on the protected attribute
to generate synthetic positive samples proportional to each group’s representation.
Finally, we apply group-aware threshold optimization to all data variants.

We employ 5-fold stratified cross-validation with 20% test sets. Within training
data, we reserve 12.5% for threshold optimization using OxonFair’s grid search
over group-specific thresholds, ensuring no data leakage [6]. The validation set
provides unbiased estimates for threshold selection.

3.2 Model Families

To ensure findings generalize across algorithmic paradigms, we test several diverse
classifiers spanning linear methods (Logistic Regression, SGD Classifier), tree-
based approaches (Random Forest, Histogram-based Gradient Boosting, XGBoost,
CatBoost), and instance-based methods (k-Nearest Neighbors). This diversity
ensures our conclusions aren’t artifacts of specific algorithms.

3.3 Evaluation Framework

We focus on two key metrics that capture performance on imbalanced data with
protected groups. Balanced Accuracy (BA) serves as our primary metric for
overall imbalanced performance, computed as the average of true positive rate
and true negative rate to give equal weight to both classes. As noted by [14],
balanced accuracy provides a more reliable assessment than traditional accuracy
for imbalanced datasets, maintaining consistent interpretation across different
class distributions.

Worst-Group Balanced Accuracy (WG-BA) measures the minimum balanced
accuracy across demographic groups, ensuring no group is left behind by our
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optimization. This metric aligns with the group distributional robustness frame-
work of [15], providing guarantees against performance degradation for minority
groups.

For threshold optimization, we explore two objectives using group-specific
thresholds. Fair-BalAcc maximizes overall balanced accuracy while using different
thresholds per group, allowing the algorithm to find the best global performance
while leveraging group-specific decision boundaries. Fair-MinBalAcc explicitly
maximizes worst-group balanced accuracy, directly optimizing for the most
disadvantaged group to ensure equitable performance.

4 Results

4.1 Main Findings: Group-Aware Thresholds Dominate

Tables 1 and 2 present comprehensive results across all model families, re-
vealing that group-aware threshold optimization on original data consistently
outperforms synthetic augmentation approaches. The pattern holds remarkably
consistent across diverse algorithmic paradigms, confirming findings from [1, 10]
that threshold optimization often provides more reliable improvements than
data-level interventions.

On the UCI Default of Credit Card Clients dataset, for logistic regres-
sion, group-aware threshold optimization on original data achieves a balanced
accuracy of 0.687, outperforming both SMOTE’s raw performance (0.650) and
CT-GAN’s raw performance (0.619). Applying fairness thresholds to the syn-
thetic data from SMOTE and CT-GAN results in balanced accuracies of 0.663
and 0.676 respectively, both of which fall short of the results from applying
thresholds to the original data. The worst-group balanced accuracy tells a similar
story, with original data plus thresholds achieving 0.683, substantially exceeding
SMOTE-Raw (0.643) and CTGAN-Raw (0.606).

Tree-based models on the same dataset demonstrate even stronger patterns.
For Hist. GB, group-aware thresholds on original data achieve a balanced accuracy
of 0.709, a significant improvement over SMOTE’s raw performance (0.674) and
CT-GAN’s raw performance (0.656). The worst-group balanced accuracy for
Hist. GB on original data with thresholds reaches 0.703− 0.704, which is notably
better than SMOTE’s raw performance (0.672).

4.2 The Redundancy of Synthetic Augmentation

A critical insight emerges when examining the incremental benefit of applying
group-aware thresholds to synthetically augmented data. On the Adult Income
dataset, for the CatBoost model, applying thresholds to the original data
provides a large boost in balanced accuracy from 0.794 to 0.838 (a gain of 0.044).
However, when applied to the already-augmented SMOTE data, thresholds only
provide a gain of 0.022 (from 0.808 to 0.830). This pattern of diminishing returns
holds across model families, supporting [16] observation that combining multiple
imbalance-handling techniques often yields limited additional benefits.
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Table 1. Results for UCI Default of Credit Card Clients dataset: Balanced accuracy
(BA) and worst-group balanced accuracy (WG-BA) across all models and methods
on credit default dataset. Bold indicates best overall performance within each model.
Underlined values show when Original+Thresholding outperforms both SMOTE-Raw
and CTGAN-Raw baselines.

Original Data SMOTE CT-GAN

Model Method BA WG-BA BA WG-BA BA WG-BA

Logistic Reg.
Raw 0.603 0.592 0.650 0.643 0.619 0.606
Fair-BalAcc 0.687 0.683 0.663 0.658 0.676 0.673
Fair-MinBalAcc 0.686 0.683 0.662 0.658 0.675 0.667

SGD
Raw 0.524 0.523 0.520 0.520 0.508 0.507
Fair-BalAcc 0.535 0.522 0.526 0.511 0.518 0.505
Fair-MinBalAcc 0.535 0.522 0.526 0.511 0.518 0.505

Random Forest
Raw 0.657 0.653 0.676 0.674 0.659 0.654
Fair-BalAcc 0.700 0.695 0.685 0.678 0.693 0.691
Fair-MinBalAcc 0.701 0.695 0.686 0.679 0.693 0.691

Hist. GB
Raw 0.657 0.655 0.674 0.672 0.656 0.654
Fair-BalAcc 0.709 0.704 0.676 0.672 0.706 0.699
Fair-MinBalAcc 0.705 0.703 0.675 0.672 0.703 0.699

XGBoost
Raw 0.648 0.643 0.654 0.652 0.650 0.647
Fair-BalAcc 0.691 0.684 0.664 0.660 0.690 0.684
Fair-MinBalAcc 0.692 0.685 0.663 0.660 0.690 0.683

CatBoost
Raw 0.656 0.654 0.669 0.665 0.656 0.653
Fair-BalAcc 0.708 0.705 0.674 0.670 0.709 0.705
Fair-MinBalAcc 0.707 0.701 0.674 0.671 0.710 0.706

k-NN
Raw 0.542 0.538 0.575 0.572 0.542 0.538
Fair-BalAcc 0.566 0.556 0.568 0.555 0.565 0.556
Fair-MinBalAcc 0.566 0.556 0.568 0.555 0.565 0.556
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Table 2. Adult Income dataset: Balanced accuracy (BA) and worst-group balanced
accuracy (WG-BA) across all models and methods on the credit-default dataset. Bold
= best overall performance within each model. Underlined = Original + Thresholding
outperforms both SMOTE-Raw and CTGAN-Raw baselines.

Original Data SMOTE CT-GAN

Model Method BA WG-BA BA WG-BA BA WG-BA

Logistic Reg.
Raw 0.674 0.665 0.738 0.668 0.685 0.662
Fair-BalAcc 0.753 0.708 0.747 0.674 0.750 0.691
Fair-MinBalAcc 0.753 0.708 0.746 0.680 0.751 0.692

SGD
Raw 0.558 0.550 0.557 0.550 0.541 0.534
Fair-BalAcc 0.576 0.500 0.575 0.500 0.543 0.517
Fair-MinBalAcc 0.576 0.500 0.575 0.500 0.543 0.517

Random Forest
Raw 0.775 0.735 0.786 0.756 0.778 0.738
Fair-BalAcc 0.815 0.748 0.806 0.736 0.811 0.750
Fair-MinBalAcc 0.815 0.748 0.806 0.760 0.810 0.750

Hist. GB
Raw 0.796 0.725 0.802 0.774 0.800 0.734
Fair-BalAcc 0.836 0.753 0.824 0.729 0.835 0.760
Fair-MinBalAcc 0.836 0.753 0.824 0.729 0.834 0.760

XGBoost
Raw 0.797 0.741 0.805 0.757 0.799 0.754
Fair-BalAcc 0.835 0.765 0.827 0.721 0.834 0.799
Fair-MinBalAcc 0.833 0.765 0.827 0.721 0.834 0.800

CatBoost
Raw 0.794 0.745 0.808 0.760 0.796 0.732
Fair-BalAcc 0.838 0.761 0.830 0.757 0.838 0.761
Fair-MinBalAcc 0.838 0.779 0.828 0.757 0.838 0.769

k-NN
Raw 0.611 0.594 0.608 0.561 0.612 0.587
Fair-BalAcc 0.614 0.596 0.618 0.586 0.612 0.553
Fair-MinBalAcc 0.614 0.596 0.614 0.559 0.613 0.557
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Similarly, for XGBoost on the credit default data, thresholding the original
data increases balanced accuracy by 0.044 (from 0.648 to 0.692). The same process
on SMOTE data yields a meager gain of just 0.009 (from 0.654 to 0.663). While
CT-GAN augmented data sometimes shows larger gains from thresholding (e.g.,
for logistic regression on the credit data, BA improves from 0.619 to 0.676), this is
often because its base performance is poor, and the final result still underperforms
simple threshold optimization on the original data (0.676 vs. 0.687).

The implication aligns with theoretical analysis by [17], who showed that
sampling and threshold-moving address the same underlying optimization problem
through different mechanisms. Our empirical results confirm their theoretical
prediction that these approaches prove largely redundant when combined.

5 Discussion

5.1 Why Group-Aware Thresholds Succeed

Rather than hoping synthetic data indirectly improves balanced accuracy across
groups, threshold methods directly optimize the target metric. This alignment
proves more effective than proxy approaches that assume balancing training data
will automatically improve group-specific and class-specific performance. Further,
avoiding distribution shift maintains the integrity of the original data distribution.
While synthetic augmentation fundamentally alters training distributions with
the intention of improving representation, this shift can degrade calibration and
introduce artifacts that harm generalization, particularly for groups with different
feature distributions. .

5.2 Implications for Practice

Our findings suggest a revised workflow for handling imbalanced datasets with
protected groups. Practitioners should start with group-aware threshold opti-
mization on original data, as it provides immediate improvements with minimal
computational cost. Comprehensive evaluation using balanced accuracy and
worst-group metrics, not just overall accuracy, reveals the true performance
across different populations. Synthetic methods should be considered only when
threshold optimization proves insufficient, such as in cases of extreme imbalance.

If synthetic augmentation is used, group-aware thresholds should still be
applied, though our results suggest expecting minimal additional gains. This
approach prioritizes interpretability and efficiency while achieving superior perfor-
mance. Stakeholders can understand different confidence requirements for different
groups, while avoiding the black-box nature of synthetic data generation.

5.3 Limitations and Future Work

Several limitations warrant discussion. Our experiments focus on binary classifi-
cation with binary protected attributes, and multi-class imbalance or continuous
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protected attributes may show different patterns. The datasets examined have
moderate imbalance ratios (approximately 4:1), and extreme imbalance might
benefit more from synthetic approaches. Domain-specific constraints, such as
regulatory requirements for equal treatment, may mandate certain approaches
regardless of empirical performance.

Future work should explore theoretical analysis of when synthetic methods
might outperform threshold optimization, perhaps in extreme imbalance scenarios
or with specific data characteristics. Extension to multi-class and multi-label
settings would broaden applicability, as would handling multiple intersecting
protected attributes.

6 Conclusion

Class imbalance remains a pervasive challenge in machine learning, particularly
when combined with fairness constraints across protected groups. Our work demon-
strates that group-aware threshold calibration provides a simple, interpretable,
and effective solution that can outperform complex synthetic data generation
approaches. By setting different decision thresholds for different demographic
groups, we achieve superior balanced accuracy and worst-group performance
compared to SMOTE and CT-GAN augmentation.

The key insight is that synthetic augmentation and threshold optimization
are fundamentally redundant—both attempt to address class imbalance, but
threshold methods do so more directly and effectively. This finding has important
implications for the field, suggesting that much of the complexity introduced by
synthetic data generation may be unnecessary. For practitioners, the message
is clear: before investing computational resources in synthetic data generation,
explore group-aware threshold calibration. Not only does it achieve better perfor-
mance with orders of magnitude less computation, but it also provides transparent,
interpretable fairness mechanisms that stakeholders can understand and trust.
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